Model save
Browse files- README.md +170 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g0.5-0.05_10_0.004_40
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g0.5-0.05_10_0.004_40
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.1651
|
21 |
+
- Wer: 0.0985
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- total_train_batch_size: 64
|
47 |
+
- total_eval_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 100
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
57 |
+
| 1068.6505 | 0.94 | 50 | 527.9987 | 15.8840 |
|
58 |
+
| 924.9194 | 1.89 | 100 | 365.2998 | 15.7290 |
|
59 |
+
| 268.1159 | 2.83 | 150 | 45.3076 | 1.0 |
|
60 |
+
| 56.3914 | 3.77 | 200 | 42.2653 | 1.0 |
|
61 |
+
| 54.5992 | 4.72 | 250 | 41.2272 | 1.0 |
|
62 |
+
| 52.7823 | 5.66 | 300 | 40.2126 | 1.0 |
|
63 |
+
| 51.1032 | 6.6 | 350 | 39.6254 | 1.0 |
|
64 |
+
| 49.2081 | 7.55 | 400 | 38.7989 | 1.0 |
|
65 |
+
| 48.3538 | 8.49 | 450 | 38.5792 | 1.0 |
|
66 |
+
| 48.8615 | 9.43 | 500 | 38.4622 | 1.0 |
|
67 |
+
| 48.1912 | 10.38 | 550 | 38.1422 | 1.0 |
|
68 |
+
| 48.3589 | 11.32 | 600 | 38.6144 | 1.0 |
|
69 |
+
| 46.5985 | 12.26 | 650 | 39.6394 | 1.0473 |
|
70 |
+
| 45.5769 | 13.21 | 700 | 37.7580 | 0.9992 |
|
71 |
+
| 44.1749 | 14.15 | 750 | 36.0692 | 0.9991 |
|
72 |
+
| 41.8932 | 15.09 | 800 | 27.9404 | 0.9316 |
|
73 |
+
| 29.8551 | 16.04 | 850 | 14.1211 | 0.3930 |
|
74 |
+
| 16.9135 | 16.98 | 900 | 7.9824 | 0.2228 |
|
75 |
+
| 11.5569 | 17.92 | 950 | 5.8073 | 0.1693 |
|
76 |
+
| 9.1965 | 18.87 | 1000 | 4.6891 | 0.1577 |
|
77 |
+
| 7.6846 | 19.81 | 1050 | 4.0938 | 0.1444 |
|
78 |
+
| 6.6186 | 20.75 | 1100 | 3.7074 | 0.1337 |
|
79 |
+
| 6.1733 | 21.7 | 1150 | 3.3769 | 0.1279 |
|
80 |
+
| 5.5833 | 22.64 | 1200 | 3.1933 | 0.1288 |
|
81 |
+
| 5.1097 | 23.58 | 1250 | 3.0785 | 0.1232 |
|
82 |
+
| 4.8098 | 24.53 | 1300 | 3.0687 | 0.1210 |
|
83 |
+
| 4.784 | 25.47 | 1350 | 2.7771 | 0.1152 |
|
84 |
+
| 4.3574 | 26.42 | 1400 | 2.7347 | 0.1200 |
|
85 |
+
| 4.2972 | 27.36 | 1450 | 2.6853 | 0.1147 |
|
86 |
+
| 4.1072 | 28.3 | 1500 | 2.5680 | 0.1185 |
|
87 |
+
| 3.9651 | 29.25 | 1550 | 2.5938 | 0.1200 |
|
88 |
+
| 4.0325 | 30.19 | 1600 | 2.5324 | 0.1180 |
|
89 |
+
| 3.6586 | 31.13 | 1650 | 2.5847 | 0.1113 |
|
90 |
+
| 3.7213 | 32.08 | 1700 | 2.5886 | 0.1116 |
|
91 |
+
| 3.4746 | 33.02 | 1750 | 2.4285 | 0.1005 |
|
92 |
+
| 3.3572 | 33.96 | 1800 | 2.4607 | 0.1073 |
|
93 |
+
| 3.2202 | 34.91 | 1850 | 2.4459 | 0.1103 |
|
94 |
+
| 3.2437 | 35.85 | 1900 | 2.3630 | 0.1027 |
|
95 |
+
| 3.1303 | 36.79 | 1950 | 2.3281 | 0.1025 |
|
96 |
+
| 3.0037 | 37.74 | 2000 | 2.3129 | 0.1019 |
|
97 |
+
| 3.0523 | 38.68 | 2050 | 2.2962 | 0.0988 |
|
98 |
+
| 2.8943 | 39.62 | 2100 | 2.3238 | 0.1021 |
|
99 |
+
| 2.8502 | 40.57 | 2150 | 2.3549 | 0.1044 |
|
100 |
+
| 2.7045 | 41.51 | 2200 | 2.3680 | 0.1018 |
|
101 |
+
| 2.7291 | 42.45 | 2250 | 2.4172 | 0.1129 |
|
102 |
+
| 2.6162 | 43.4 | 2300 | 2.3216 | 0.1018 |
|
103 |
+
| 2.5643 | 44.34 | 2350 | 2.2663 | 0.0979 |
|
104 |
+
| 2.5842 | 45.28 | 2400 | 2.2408 | 0.0986 |
|
105 |
+
| 2.4498 | 46.23 | 2450 | 2.2695 | 0.1017 |
|
106 |
+
| 2.4177 | 47.17 | 2500 | 2.2029 | 0.0980 |
|
107 |
+
| 2.3297 | 48.11 | 2550 | 2.2254 | 0.0938 |
|
108 |
+
| 2.3637 | 49.06 | 2600 | 2.2551 | 0.1011 |
|
109 |
+
| 2.2528 | 50.0 | 2650 | 2.2350 | 0.1012 |
|
110 |
+
| 2.2221 | 50.94 | 2700 | 2.2253 | 0.0968 |
|
111 |
+
| 2.3083 | 51.89 | 2750 | 2.2426 | 0.0958 |
|
112 |
+
| 2.0585 | 52.83 | 2800 | 2.2169 | 0.0972 |
|
113 |
+
| 2.2349 | 53.77 | 2850 | 2.2151 | 0.1004 |
|
114 |
+
| 2.1969 | 54.72 | 2900 | 2.2562 | 0.1024 |
|
115 |
+
| 2.0415 | 55.66 | 2950 | 2.2862 | 0.1027 |
|
116 |
+
| 2.0126 | 56.6 | 3000 | 2.2167 | 0.1015 |
|
117 |
+
| 2.1 | 57.55 | 3050 | 2.2360 | 0.1024 |
|
118 |
+
| 2.0739 | 58.49 | 3100 | 2.2198 | 0.1056 |
|
119 |
+
| 1.9875 | 59.43 | 3150 | 2.1716 | 0.0987 |
|
120 |
+
| 2.0259 | 60.38 | 3200 | 2.2143 | 0.0999 |
|
121 |
+
| 1.8519 | 61.32 | 3250 | 2.1837 | 0.0958 |
|
122 |
+
| 1.9733 | 62.26 | 3300 | 2.1865 | 0.1008 |
|
123 |
+
| 1.8496 | 63.21 | 3350 | 2.2045 | 0.1054 |
|
124 |
+
| 1.9354 | 64.15 | 3400 | 2.1783 | 0.1002 |
|
125 |
+
| 1.8247 | 65.09 | 3450 | 2.1670 | 0.0989 |
|
126 |
+
| 1.8418 | 66.04 | 3500 | 2.1823 | 0.0993 |
|
127 |
+
| 1.8259 | 66.98 | 3550 | 2.1875 | 0.0990 |
|
128 |
+
| 1.8458 | 67.92 | 3600 | 2.2048 | 0.1000 |
|
129 |
+
| 1.7796 | 68.87 | 3650 | 2.2019 | 0.0975 |
|
130 |
+
| 1.7931 | 69.81 | 3700 | 2.1673 | 0.0955 |
|
131 |
+
| 1.789 | 70.75 | 3750 | 2.1924 | 0.0985 |
|
132 |
+
| 1.8166 | 71.7 | 3800 | 2.1839 | 0.0964 |
|
133 |
+
| 1.692 | 72.64 | 3850 | 2.1771 | 0.0950 |
|
134 |
+
| 1.6898 | 73.58 | 3900 | 2.1621 | 0.0944 |
|
135 |
+
| 1.5916 | 74.53 | 3950 | 2.1718 | 0.0973 |
|
136 |
+
| 1.7778 | 75.47 | 4000 | 2.1617 | 0.0973 |
|
137 |
+
| 1.6884 | 76.42 | 4050 | 2.1566 | 0.0982 |
|
138 |
+
| 1.7182 | 77.36 | 4100 | 2.1699 | 0.0968 |
|
139 |
+
| 1.6774 | 78.3 | 4150 | 2.1849 | 0.0964 |
|
140 |
+
| 1.5921 | 79.25 | 4200 | 2.1785 | 0.0962 |
|
141 |
+
| 1.7108 | 80.19 | 4250 | 2.1642 | 0.0981 |
|
142 |
+
| 1.7039 | 81.13 | 4300 | 2.1836 | 0.0997 |
|
143 |
+
| 1.6068 | 82.08 | 4350 | 2.1924 | 0.1002 |
|
144 |
+
| 1.6267 | 83.02 | 4400 | 2.1808 | 0.0979 |
|
145 |
+
| 1.6209 | 83.96 | 4450 | 2.1808 | 0.0976 |
|
146 |
+
| 1.6989 | 84.91 | 4500 | 2.1661 | 0.0976 |
|
147 |
+
| 1.6126 | 85.85 | 4550 | 2.1738 | 0.0988 |
|
148 |
+
| 1.6623 | 86.79 | 4600 | 2.1695 | 0.0979 |
|
149 |
+
| 1.637 | 87.74 | 4650 | 2.1702 | 0.0989 |
|
150 |
+
| 1.63 | 88.68 | 4700 | 2.1631 | 0.0973 |
|
151 |
+
| 1.6153 | 89.62 | 4750 | 2.1659 | 0.0985 |
|
152 |
+
| 1.4989 | 90.57 | 4800 | 2.1691 | 0.0991 |
|
153 |
+
| 1.7316 | 91.51 | 4850 | 2.1688 | 0.0986 |
|
154 |
+
| 1.4623 | 92.45 | 4900 | 2.1635 | 0.0980 |
|
155 |
+
| 1.6932 | 93.4 | 4950 | 2.1671 | 0.0986 |
|
156 |
+
| 1.5762 | 94.34 | 5000 | 2.1678 | 0.0990 |
|
157 |
+
| 1.5346 | 95.28 | 5050 | 2.1654 | 0.0984 |
|
158 |
+
| 1.6015 | 96.23 | 5100 | 2.1667 | 0.0986 |
|
159 |
+
| 1.5609 | 97.17 | 5150 | 2.1653 | 0.0982 |
|
160 |
+
| 1.6414 | 98.11 | 5200 | 2.1648 | 0.0983 |
|
161 |
+
| 1.581 | 99.06 | 5250 | 2.1666 | 0.0987 |
|
162 |
+
| 1.6469 | 100.0 | 5300 | 2.1651 | 0.0985 |
|
163 |
+
|
164 |
+
|
165 |
+
### Framework versions
|
166 |
+
|
167 |
+
- Transformers 4.34.0
|
168 |
+
- Pytorch 2.0.1
|
169 |
+
- Datasets 2.14.5
|
170 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 197665365
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a15b224d6793425a3c579a8c7b99e6a9ee6e323869de2ed1c2269b340c6ad82d
|
3 |
size 197665365
|