--- license: cc-by-nc-4.0 base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h tags: - generated_from_trainer metrics: - wer model-index: - name: fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g1.0-0.05_10_0.004_40 results: [] --- # fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g1.0-0.05_10_0.004_40 This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1907 - Wer: 0.1001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1628.3266 | 0.94 | 50 | 795.4863 | 15.7055 | | 1167.4639 | 1.89 | 100 | 276.5289 | 0.9954 | | 193.5269 | 2.83 | 150 | 67.2639 | 1.0 | | 86.2802 | 3.77 | 200 | 63.6259 | 1.0 | | 82.8944 | 4.72 | 250 | 61.8939 | 1.0 | | 79.9575 | 5.66 | 300 | 59.7914 | 1.0 | | 77.3429 | 6.6 | 350 | 58.1507 | 1.0 | | 74.0584 | 7.55 | 400 | 57.2977 | 1.0 | | 72.6694 | 8.49 | 450 | 56.7115 | 1.0 | | 73.417 | 9.43 | 500 | 56.6074 | 1.0 | | 72.4291 | 10.38 | 550 | 56.4755 | 1.0 | | 72.7847 | 11.32 | 600 | 56.8623 | 1.0 | | 69.3297 | 12.26 | 650 | 49.6540 | 0.9637 | | 54.2644 | 13.21 | 700 | 29.1559 | 0.5631 | | 31.2303 | 14.15 | 750 | 13.8957 | 0.2414 | | 19.4522 | 15.09 | 800 | 9.7460 | 0.1949 | | 15.0046 | 16.04 | 850 | 7.6735 | 0.1622 | | 12.3783 | 16.98 | 900 | 6.5559 | 0.1520 | | 10.7256 | 17.92 | 950 | 5.7852 | 0.1423 | | 9.8218 | 18.87 | 1000 | 5.4473 | 0.1395 | | 9.0115 | 19.81 | 1050 | 5.1250 | 0.1356 | | 8.1076 | 20.75 | 1100 | 4.7980 | 0.1233 | | 7.9779 | 21.7 | 1150 | 4.6150 | 0.1211 | | 7.6027 | 22.64 | 1200 | 4.6507 | 0.1251 | | 7.4535 | 23.58 | 1250 | 4.4814 | 0.1210 | | 6.946 | 24.53 | 1300 | 4.4369 | 0.1149 | | 7.0627 | 25.47 | 1350 | 4.1153 | 0.1139 | | 6.2482 | 26.42 | 1400 | 4.0045 | 0.1101 | | 6.2238 | 27.36 | 1450 | 4.0355 | 0.1158 | | 5.8919 | 28.3 | 1500 | 3.9625 | 0.1154 | | 5.7955 | 29.25 | 1550 | 3.7957 | 0.1127 | | 5.4849 | 30.19 | 1600 | 3.7986 | 0.1058 | | 5.1108 | 31.13 | 1650 | 3.8188 | 0.1070 | | 5.3354 | 32.08 | 1700 | 3.6909 | 0.1024 | | 5.1149 | 33.02 | 1750 | 3.6227 | 0.1023 | | 4.976 | 33.96 | 1800 | 3.6176 | 0.1016 | | 4.5904 | 34.91 | 1850 | 3.5959 | 0.1079 | | 4.6613 | 35.85 | 1900 | 3.5000 | 0.1069 | | 4.7697 | 36.79 | 1950 | 3.5211 | 0.1014 | | 4.4224 | 37.74 | 2000 | 3.4720 | 0.1001 | | 4.5255 | 38.68 | 2050 | 3.4178 | 0.0983 | | 4.2808 | 39.62 | 2100 | 3.4801 | 0.1044 | | 4.2407 | 40.57 | 2150 | 3.4080 | 0.1000 | | 3.9611 | 41.51 | 2200 | 3.4514 | 0.1049 | | 4.014 | 42.45 | 2250 | 3.3983 | 0.1089 | | 3.8487 | 43.4 | 2300 | 3.4164 | 0.1042 | | 3.8132 | 44.34 | 2350 | 3.3562 | 0.0958 | | 3.6973 | 45.28 | 2400 | 3.2839 | 0.0978 | | 3.606 | 46.23 | 2450 | 3.3125 | 0.1009 | | 3.5412 | 47.17 | 2500 | 3.2580 | 0.0977 | | 3.3971 | 48.11 | 2550 | 3.3065 | 0.0984 | | 3.4795 | 49.06 | 2600 | 3.3312 | 0.1037 | | 3.302 | 50.0 | 2650 | 3.3015 | 0.0986 | | 3.2486 | 50.94 | 2700 | 3.2506 | 0.0977 | | 3.3977 | 51.89 | 2750 | 3.2406 | 0.0952 | | 3.0229 | 52.83 | 2800 | 3.2880 | 0.0989 | | 3.2615 | 53.77 | 2850 | 3.3112 | 0.0998 | | 3.2023 | 54.72 | 2900 | 3.2895 | 0.1037 | | 3.0037 | 55.66 | 2950 | 3.3394 | 0.1018 | | 2.9249 | 56.6 | 3000 | 3.2351 | 0.0974 | | 3.112 | 57.55 | 3050 | 3.2868 | 0.1019 | | 3.0261 | 58.49 | 3100 | 3.3241 | 0.1039 | | 2.8959 | 59.43 | 3150 | 3.2251 | 0.0947 | | 2.946 | 60.38 | 3200 | 3.2880 | 0.1012 | | 2.6933 | 61.32 | 3250 | 3.2595 | 0.1031 | | 2.8755 | 62.26 | 3300 | 3.2140 | 0.1048 | | 2.606 | 63.21 | 3350 | 3.2743 | 0.1075 | | 2.7607 | 64.15 | 3400 | 3.2455 | 0.1053 | | 2.6394 | 65.09 | 3450 | 3.2335 | 0.0994 | | 2.6899 | 66.04 | 3500 | 3.2278 | 0.1004 | | 2.719 | 66.98 | 3550 | 3.2012 | 0.0979 | | 2.6997 | 67.92 | 3600 | 3.2009 | 0.0979 | | 2.5935 | 68.87 | 3650 | 3.2141 | 0.0978 | | 2.6115 | 69.81 | 3700 | 3.1760 | 0.0947 | | 2.5713 | 70.75 | 3750 | 3.1937 | 0.0977 | | 2.6647 | 71.7 | 3800 | 3.1629 | 0.0986 | | 2.4878 | 72.64 | 3850 | 3.1675 | 0.0952 | | 2.4761 | 73.58 | 3900 | 3.1951 | 0.0976 | | 2.3124 | 74.53 | 3950 | 3.1629 | 0.0954 | | 2.5718 | 75.47 | 4000 | 3.1577 | 0.0978 | | 2.4606 | 76.42 | 4050 | 3.1632 | 0.0973 | | 2.5313 | 77.36 | 4100 | 3.1841 | 0.0988 | | 2.5124 | 78.3 | 4150 | 3.1894 | 0.0987 | | 2.3324 | 79.25 | 4200 | 3.1719 | 0.0966 | | 2.4468 | 80.19 | 4250 | 3.1760 | 0.0964 | | 2.4035 | 81.13 | 4300 | 3.2014 | 0.0983 | | 2.3834 | 82.08 | 4350 | 3.1823 | 0.0966 | | 2.3655 | 83.02 | 4400 | 3.1758 | 0.0948 | | 2.3525 | 83.96 | 4450 | 3.1921 | 0.0980 | | 2.4428 | 84.91 | 4500 | 3.1990 | 0.0970 | | 2.3276 | 85.85 | 4550 | 3.1907 | 0.0984 | | 2.4423 | 86.79 | 4600 | 3.1893 | 0.0977 | | 2.3457 | 87.74 | 4650 | 3.2001 | 0.1005 | | 2.4146 | 88.68 | 4700 | 3.1883 | 0.0985 | | 2.3415 | 89.62 | 4750 | 3.1934 | 0.0997 | | 2.2057 | 90.57 | 4800 | 3.1939 | 0.0995 | | 2.5141 | 91.51 | 4850 | 3.1944 | 0.1006 | | 2.175 | 92.45 | 4900 | 3.1808 | 0.0986 | | 2.4668 | 93.4 | 4950 | 3.1885 | 0.0994 | | 2.2732 | 94.34 | 5000 | 3.1877 | 0.0998 | | 2.2636 | 95.28 | 5050 | 3.1877 | 0.0989 | | 2.3504 | 96.23 | 5100 | 3.1904 | 0.1000 | | 2.2721 | 97.17 | 5150 | 3.1917 | 0.1005 | | 2.4014 | 98.11 | 5200 | 3.1922 | 0.1003 | | 2.3263 | 99.06 | 5250 | 3.1897 | 0.0998 | | 2.3731 | 100.0 | 5300 | 3.1907 | 0.1001 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.14.1