Model save
Browse files- README.md +170 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g1.0-0.05_10_0.004_40
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g1.0-0.05_10_0.004_40
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 4.2488
|
21 |
+
- Wer: 0.0990
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- total_train_batch_size: 64
|
47 |
+
- total_eval_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 100
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
57 |
+
| 2181.8592 | 0.94 | 50 | 1087.6210 | 15.9420 |
|
58 |
+
| 1908.6856 | 1.89 | 100 | 809.7703 | 15.8773 |
|
59 |
+
| 838.4017 | 2.83 | 150 | 112.6467 | 0.9997 |
|
60 |
+
| 117.7945 | 3.77 | 200 | 85.6792 | 1.0 |
|
61 |
+
| 109.9946 | 4.72 | 250 | 82.5771 | 1.0 |
|
62 |
+
| 105.7306 | 5.66 | 300 | 79.6600 | 1.0 |
|
63 |
+
| 102.0127 | 6.6 | 350 | 77.2287 | 1.0 |
|
64 |
+
| 97.9428 | 7.55 | 400 | 75.4334 | 1.0 |
|
65 |
+
| 96.0055 | 8.49 | 450 | 74.6870 | 1.0 |
|
66 |
+
| 96.9376 | 9.43 | 500 | 74.2493 | 1.0 |
|
67 |
+
| 95.6634 | 10.38 | 550 | 74.1341 | 1.0 |
|
68 |
+
| 96.1578 | 11.32 | 600 | 74.9003 | 1.0 |
|
69 |
+
| 92.5678 | 12.26 | 650 | 75.6603 | 1.0598 |
|
70 |
+
| 90.5927 | 13.21 | 700 | 73.4555 | 1.0539 |
|
71 |
+
| 87.8965 | 14.15 | 750 | 72.4102 | 0.9987 |
|
72 |
+
| 86.8467 | 15.09 | 800 | 69.7737 | 0.9984 |
|
73 |
+
| 85.3381 | 16.04 | 850 | 67.8433 | 0.9717 |
|
74 |
+
| 80.3298 | 16.98 | 900 | 52.4081 | 0.8594 |
|
75 |
+
| 56.9494 | 17.92 | 950 | 25.2678 | 0.3554 |
|
76 |
+
| 32.292 | 18.87 | 1000 | 14.8634 | 0.2190 |
|
77 |
+
| 22.3255 | 19.81 | 1050 | 11.2898 | 0.1823 |
|
78 |
+
| 17.6187 | 20.75 | 1100 | 9.1387 | 0.1534 |
|
79 |
+
| 15.1531 | 21.7 | 1150 | 7.6636 | 0.1368 |
|
80 |
+
| 13.1696 | 22.64 | 1200 | 7.0291 | 0.1434 |
|
81 |
+
| 11.9792 | 23.58 | 1250 | 6.6867 | 0.1325 |
|
82 |
+
| 11.2404 | 24.53 | 1300 | 6.2948 | 0.1213 |
|
83 |
+
| 10.6256 | 25.47 | 1350 | 5.7151 | 0.1180 |
|
84 |
+
| 9.452 | 26.42 | 1400 | 5.4196 | 0.1175 |
|
85 |
+
| 9.3087 | 27.36 | 1450 | 5.2929 | 0.1124 |
|
86 |
+
| 8.5149 | 28.3 | 1500 | 5.1394 | 0.1163 |
|
87 |
+
| 8.3662 | 29.25 | 1550 | 5.1275 | 0.1213 |
|
88 |
+
| 7.8852 | 30.19 | 1600 | 4.9033 | 0.1093 |
|
89 |
+
| 7.5135 | 31.13 | 1650 | 4.9572 | 0.1097 |
|
90 |
+
| 7.5374 | 32.08 | 1700 | 4.7588 | 0.1016 |
|
91 |
+
| 7.2968 | 33.02 | 1750 | 4.7317 | 0.1033 |
|
92 |
+
| 7.0861 | 33.96 | 1800 | 4.7916 | 0.1087 |
|
93 |
+
| 6.6371 | 34.91 | 1850 | 4.7941 | 0.1132 |
|
94 |
+
| 6.6186 | 35.85 | 1900 | 4.6608 | 0.1036 |
|
95 |
+
| 6.6288 | 36.79 | 1950 | 4.6790 | 0.1074 |
|
96 |
+
| 6.2433 | 37.74 | 2000 | 4.7715 | 0.1121 |
|
97 |
+
| 6.2362 | 38.68 | 2050 | 4.6420 | 0.1034 |
|
98 |
+
| 5.957 | 39.62 | 2100 | 4.5756 | 0.1070 |
|
99 |
+
| 5.8034 | 40.57 | 2150 | 4.4112 | 0.1060 |
|
100 |
+
| 5.4943 | 41.51 | 2200 | 4.5632 | 0.1034 |
|
101 |
+
| 5.5593 | 42.45 | 2250 | 4.5376 | 0.1105 |
|
102 |
+
| 5.3447 | 43.4 | 2300 | 4.5423 | 0.1006 |
|
103 |
+
| 5.4181 | 44.34 | 2350 | 4.3789 | 0.0993 |
|
104 |
+
| 5.222 | 45.28 | 2400 | 4.3695 | 0.1031 |
|
105 |
+
| 5.1146 | 46.23 | 2450 | 4.4108 | 0.1084 |
|
106 |
+
| 5.0952 | 47.17 | 2500 | 4.2957 | 0.1016 |
|
107 |
+
| 4.9023 | 48.11 | 2550 | 4.3769 | 0.1021 |
|
108 |
+
| 5.1633 | 49.06 | 2600 | 4.3633 | 0.1063 |
|
109 |
+
| 4.9489 | 50.0 | 2650 | 4.3422 | 0.1045 |
|
110 |
+
| 4.7391 | 50.94 | 2700 | 4.2510 | 0.1029 |
|
111 |
+
| 4.7996 | 51.89 | 2750 | 4.3254 | 0.1012 |
|
112 |
+
| 4.244 | 52.83 | 2800 | 4.4121 | 0.1035 |
|
113 |
+
| 4.5831 | 53.77 | 2850 | 4.4056 | 0.1044 |
|
114 |
+
| 4.5198 | 54.72 | 2900 | 4.3638 | 0.1050 |
|
115 |
+
| 4.1964 | 55.66 | 2950 | 4.3397 | 0.1071 |
|
116 |
+
| 4.0544 | 56.6 | 3000 | 4.3493 | 0.1031 |
|
117 |
+
| 4.3568 | 57.55 | 3050 | 4.4721 | 0.1059 |
|
118 |
+
| 4.2692 | 58.49 | 3100 | 4.4278 | 0.1117 |
|
119 |
+
| 4.1226 | 59.43 | 3150 | 4.3081 | 0.1004 |
|
120 |
+
| 4.2681 | 60.38 | 3200 | 4.4176 | 0.1059 |
|
121 |
+
| 3.8412 | 61.32 | 3250 | 4.3213 | 0.1028 |
|
122 |
+
| 4.1387 | 62.26 | 3300 | 4.3419 | 0.1056 |
|
123 |
+
| 3.6847 | 63.21 | 3350 | 4.2498 | 0.1065 |
|
124 |
+
| 3.8768 | 64.15 | 3400 | 4.2776 | 0.1028 |
|
125 |
+
| 3.659 | 65.09 | 3450 | 4.2988 | 0.1008 |
|
126 |
+
| 3.809 | 66.04 | 3500 | 4.3041 | 0.1034 |
|
127 |
+
| 3.7459 | 66.98 | 3550 | 4.2955 | 0.0995 |
|
128 |
+
| 3.7996 | 67.92 | 3600 | 4.2843 | 0.0993 |
|
129 |
+
| 3.6773 | 68.87 | 3650 | 4.2396 | 0.0988 |
|
130 |
+
| 3.6364 | 69.81 | 3700 | 4.2206 | 0.0963 |
|
131 |
+
| 3.6342 | 70.75 | 3750 | 4.2905 | 0.1018 |
|
132 |
+
| 3.7012 | 71.7 | 3800 | 4.3084 | 0.0994 |
|
133 |
+
| 3.4846 | 72.64 | 3850 | 4.2872 | 0.0976 |
|
134 |
+
| 3.4814 | 73.58 | 3900 | 4.2596 | 0.1003 |
|
135 |
+
| 3.3212 | 74.53 | 3950 | 4.2270 | 0.0964 |
|
136 |
+
| 3.6578 | 75.47 | 4000 | 4.2477 | 0.0978 |
|
137 |
+
| 3.4573 | 76.42 | 4050 | 4.2389 | 0.0973 |
|
138 |
+
| 3.5776 | 77.36 | 4100 | 4.2827 | 0.0989 |
|
139 |
+
| 3.5116 | 78.3 | 4150 | 4.3245 | 0.1002 |
|
140 |
+
| 3.3334 | 79.25 | 4200 | 4.2707 | 0.0996 |
|
141 |
+
| 3.4829 | 80.19 | 4250 | 4.2456 | 0.0982 |
|
142 |
+
| 3.44 | 81.13 | 4300 | 4.2846 | 0.1003 |
|
143 |
+
| 3.4112 | 82.08 | 4350 | 4.2800 | 0.0977 |
|
144 |
+
| 3.3825 | 83.02 | 4400 | 4.2569 | 0.0976 |
|
145 |
+
| 3.3444 | 83.96 | 4450 | 4.2334 | 0.0949 |
|
146 |
+
| 3.5125 | 84.91 | 4500 | 4.2632 | 0.0978 |
|
147 |
+
| 3.3393 | 85.85 | 4550 | 4.2508 | 0.0979 |
|
148 |
+
| 3.4698 | 86.79 | 4600 | 4.2483 | 0.1000 |
|
149 |
+
| 3.3466 | 87.74 | 4650 | 4.2560 | 0.0985 |
|
150 |
+
| 3.3808 | 88.68 | 4700 | 4.2550 | 0.0973 |
|
151 |
+
| 3.3442 | 89.62 | 4750 | 4.2574 | 0.0982 |
|
152 |
+
| 3.0359 | 90.57 | 4800 | 4.2572 | 0.0993 |
|
153 |
+
| 3.5286 | 91.51 | 4850 | 4.2509 | 0.0993 |
|
154 |
+
| 3.0826 | 92.45 | 4900 | 4.2408 | 0.0977 |
|
155 |
+
| 3.513 | 93.4 | 4950 | 4.2531 | 0.0990 |
|
156 |
+
| 3.272 | 94.34 | 5000 | 4.2558 | 0.0995 |
|
157 |
+
| 3.2433 | 95.28 | 5050 | 4.2515 | 0.0992 |
|
158 |
+
| 3.3373 | 96.23 | 5100 | 4.2524 | 0.1001 |
|
159 |
+
| 3.2239 | 97.17 | 5150 | 4.2540 | 0.0995 |
|
160 |
+
| 3.4072 | 98.11 | 5200 | 4.2486 | 0.0993 |
|
161 |
+
| 3.3015 | 99.06 | 5250 | 4.2497 | 0.0988 |
|
162 |
+
| 3.329 | 100.0 | 5300 | 4.2488 | 0.0990 |
|
163 |
+
|
164 |
+
|
165 |
+
### Framework versions
|
166 |
+
|
167 |
+
- Transformers 4.34.0
|
168 |
+
- Pytorch 2.0.1
|
169 |
+
- Datasets 2.14.5
|
170 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 197665365
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98c4d3ae3a87b9569e6d35696b7c2fb40e6748c92615cd041ce63031679962b1
|
3 |
size 197665365
|