Model save
Browse files- README.md +141 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/wavlm-base
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: md_d_l2_arctic
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# md_d_l2_arctic
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8258
|
20 |
+
- Wer: 0.6289
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 20
|
41 |
+
- eval_batch_size: 20
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 40
|
45 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 100
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 14.3657 | 1.27 | 100 | 9.1210 | 2.4375 |
|
56 |
+
| 4.382 | 2.53 | 200 | 3.4219 | 1.0 |
|
57 |
+
| 3.2514 | 3.8 | 300 | 2.7881 | 0.9980 |
|
58 |
+
| 2.4508 | 5.06 | 400 | 1.8000 | 0.7380 |
|
59 |
+
| 1.6168 | 6.33 | 500 | 1.1315 | 0.9678 |
|
60 |
+
| 1.1212 | 7.59 | 600 | 0.8749 | 1.0658 |
|
61 |
+
| 0.8953 | 8.86 | 700 | 0.7655 | 0.9655 |
|
62 |
+
| 0.7684 | 10.13 | 800 | 0.6687 | 0.7621 |
|
63 |
+
| 0.6661 | 11.39 | 900 | 0.6319 | 0.6756 |
|
64 |
+
| 0.6306 | 12.66 | 1000 | 0.6196 | 0.6963 |
|
65 |
+
| 0.5759 | 13.92 | 1100 | 0.5875 | 0.5965 |
|
66 |
+
| 0.5417 | 15.19 | 1200 | 0.5780 | 0.6528 |
|
67 |
+
| 0.528 | 16.46 | 1300 | 0.5798 | 0.6539 |
|
68 |
+
| 0.4857 | 17.72 | 1400 | 0.5569 | 0.5725 |
|
69 |
+
| 0.4655 | 18.99 | 1500 | 0.5500 | 0.5755 |
|
70 |
+
| 0.4526 | 20.25 | 1600 | 0.5583 | 0.5776 |
|
71 |
+
| 0.4287 | 21.52 | 1700 | 0.5557 | 0.5610 |
|
72 |
+
| 0.4149 | 22.78 | 1800 | 0.5575 | 0.5748 |
|
73 |
+
| 0.3983 | 24.05 | 1900 | 0.5649 | 0.6003 |
|
74 |
+
| 0.4001 | 25.32 | 2000 | 0.5674 | 0.5976 |
|
75 |
+
| 0.3649 | 26.58 | 2100 | 0.5797 | 0.5805 |
|
76 |
+
| 0.3711 | 27.85 | 2200 | 0.5839 | 0.6546 |
|
77 |
+
| 0.3547 | 29.11 | 2300 | 0.5735 | 0.5904 |
|
78 |
+
| 0.3402 | 30.38 | 2400 | 0.5699 | 0.5426 |
|
79 |
+
| 0.3414 | 31.65 | 2500 | 0.5700 | 0.5421 |
|
80 |
+
| 0.3255 | 32.91 | 2600 | 0.5745 | 0.5663 |
|
81 |
+
| 0.3093 | 34.18 | 2700 | 0.5958 | 0.5932 |
|
82 |
+
| 0.315 | 35.44 | 2800 | 0.5934 | 0.5906 |
|
83 |
+
| 0.31 | 36.71 | 2900 | 0.6072 | 0.6011 |
|
84 |
+
| 0.3026 | 37.97 | 3000 | 0.6038 | 0.5760 |
|
85 |
+
| 0.2802 | 39.24 | 3100 | 0.6080 | 0.5777 |
|
86 |
+
| 0.2835 | 40.51 | 3200 | 0.6062 | 0.5744 |
|
87 |
+
| 0.2585 | 41.77 | 3300 | 0.6225 | 0.5784 |
|
88 |
+
| 0.2699 | 43.04 | 3400 | 0.6226 | 0.5665 |
|
89 |
+
| 0.2785 | 44.3 | 3500 | 0.6240 | 0.5714 |
|
90 |
+
| 0.2689 | 45.57 | 3600 | 0.6295 | 0.5649 |
|
91 |
+
| 0.2514 | 46.84 | 3700 | 0.6425 | 0.5421 |
|
92 |
+
| 0.2433 | 48.1 | 3800 | 0.6668 | 0.6068 |
|
93 |
+
| 0.2403 | 49.37 | 3900 | 0.6563 | 0.5750 |
|
94 |
+
| 0.2287 | 50.63 | 4000 | 0.6696 | 0.5933 |
|
95 |
+
| 0.2366 | 51.9 | 4100 | 0.6739 | 0.5731 |
|
96 |
+
| 0.2295 | 53.16 | 4200 | 0.6809 | 0.6091 |
|
97 |
+
| 0.2274 | 54.43 | 4300 | 0.6875 | 0.5914 |
|
98 |
+
| 0.2178 | 55.7 | 4400 | 0.6899 | 0.5949 |
|
99 |
+
| 0.2176 | 56.96 | 4500 | 0.6925 | 0.5828 |
|
100 |
+
| 0.2064 | 58.23 | 4600 | 0.7009 | 0.5985 |
|
101 |
+
| 0.2081 | 59.49 | 4700 | 0.7013 | 0.5996 |
|
102 |
+
| 0.2093 | 60.76 | 4800 | 0.7257 | 0.6086 |
|
103 |
+
| 0.2024 | 62.03 | 4900 | 0.7215 | 0.6003 |
|
104 |
+
| 0.1999 | 63.29 | 5000 | 0.7333 | 0.6091 |
|
105 |
+
| 0.2064 | 64.56 | 5100 | 0.7530 | 0.6397 |
|
106 |
+
| 0.186 | 65.82 | 5200 | 0.7542 | 0.6349 |
|
107 |
+
| 0.186 | 67.09 | 5300 | 0.7416 | 0.6270 |
|
108 |
+
| 0.1807 | 68.35 | 5400 | 0.7549 | 0.6352 |
|
109 |
+
| 0.1784 | 69.62 | 5500 | 0.7506 | 0.5844 |
|
110 |
+
| 0.1824 | 70.89 | 5600 | 0.7611 | 0.6253 |
|
111 |
+
| 0.1769 | 72.15 | 5700 | 0.7713 | 0.5927 |
|
112 |
+
| 0.1843 | 73.42 | 5800 | 0.7720 | 0.5956 |
|
113 |
+
| 0.1709 | 74.68 | 5900 | 0.7805 | 0.6258 |
|
114 |
+
| 0.1691 | 75.95 | 6000 | 0.7865 | 0.6282 |
|
115 |
+
| 0.1701 | 77.22 | 6100 | 0.7808 | 0.6218 |
|
116 |
+
| 0.1735 | 78.48 | 6200 | 0.7790 | 0.5966 |
|
117 |
+
| 0.1746 | 79.75 | 6300 | 0.7949 | 0.6431 |
|
118 |
+
| 0.1745 | 81.01 | 6400 | 0.8126 | 0.6285 |
|
119 |
+
| 0.1605 | 82.28 | 6500 | 0.8113 | 0.6195 |
|
120 |
+
| 0.1579 | 83.54 | 6600 | 0.7977 | 0.6155 |
|
121 |
+
| 0.1704 | 84.81 | 6700 | 0.8017 | 0.6140 |
|
122 |
+
| 0.1659 | 86.08 | 6800 | 0.8147 | 0.6279 |
|
123 |
+
| 0.166 | 87.34 | 6900 | 0.8088 | 0.6350 |
|
124 |
+
| 0.1539 | 88.61 | 7000 | 0.8053 | 0.6164 |
|
125 |
+
| 0.1589 | 89.87 | 7100 | 0.8189 | 0.6357 |
|
126 |
+
| 0.1559 | 91.14 | 7200 | 0.8152 | 0.6258 |
|
127 |
+
| 0.1564 | 92.41 | 7300 | 0.8191 | 0.6245 |
|
128 |
+
| 0.158 | 93.67 | 7400 | 0.8255 | 0.6333 |
|
129 |
+
| 0.1595 | 94.94 | 7500 | 0.8184 | 0.6206 |
|
130 |
+
| 0.1638 | 96.2 | 7600 | 0.8230 | 0.6364 |
|
131 |
+
| 0.1629 | 97.47 | 7700 | 0.8245 | 0.6312 |
|
132 |
+
| 0.1531 | 98.73 | 7800 | 0.8226 | 0.6267 |
|
133 |
+
| 0.1572 | 100.0 | 7900 | 0.8258 | 0.6289 |
|
134 |
+
|
135 |
+
|
136 |
+
### Framework versions
|
137 |
+
|
138 |
+
- Transformers 4.39.3
|
139 |
+
- Pytorch 2.1.2
|
140 |
+
- Datasets 2.18.0
|
141 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 772527092
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bcd2b80dc0405872c7d187abdbce061861e681da027b67f2f2ddb5c8fbddd66
|
3 |
size 772527092
|