Model save
Browse files
README.md
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: w2v2_ablation_with_ling_head-drop0.1-not-load-best-wer-best_on_tp0.025_tl10_fp0.001_fl16
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# w2v2_ablation_with_ling_head-drop0.1-not-load-best-wer-best_on_tp0.025_tl10_fp0.001_fl16
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4141
|
21 |
+
- Wer: 0.0914
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- total_eval_batch_size: 64
|
48 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 100
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
|
58 |
+
| 119.415 | 0.94 | 100 | 91.5112 | 18.6364 |
|
59 |
+
| 74.7916 | 1.89 | 200 | 12.2928 | 0.9951 |
|
60 |
+
| 6.9068 | 2.83 | 300 | 5.2345 | 1.0 |
|
61 |
+
| 5.1207 | 3.77 | 400 | 5.0365 | 1.0 |
|
62 |
+
| 4.7306 | 4.72 | 500 | 4.9152 | 1.0 |
|
63 |
+
| 4.4974 | 5.66 | 600 | 4.9315 | 1.0 |
|
64 |
+
| 4.3923 | 6.6 | 700 | 4.7918 | 1.0 |
|
65 |
+
| 4.3447 | 7.55 | 800 | 4.6447 | 1.0 |
|
66 |
+
| 4.225 | 8.49 | 900 | 4.6061 | 1.0 |
|
67 |
+
| 3.9805 | 9.43 | 1000 | 3.6422 | 0.8733 |
|
68 |
+
| 2.8303 | 10.38 | 1100 | 1.7824 | 0.3489 |
|
69 |
+
| 1.5807 | 11.32 | 1200 | 1.0908 | 0.2162 |
|
70 |
+
| 1.1284 | 12.26 | 1300 | 0.8473 | 0.1640 |
|
71 |
+
| 0.8703 | 13.21 | 1400 | 0.7322 | 0.1423 |
|
72 |
+
| 0.7576 | 14.15 | 1500 | 0.6551 | 0.1325 |
|
73 |
+
| 0.6256 | 15.09 | 1600 | 0.6027 | 0.1387 |
|
74 |
+
| 0.594 | 16.04 | 1700 | 0.5550 | 0.1300 |
|
75 |
+
| 0.5492 | 16.98 | 1800 | 0.5200 | 0.1159 |
|
76 |
+
| 0.476 | 17.92 | 1900 | 0.5012 | 0.1091 |
|
77 |
+
| 0.4822 | 18.87 | 2000 | 0.5112 | 0.1074 |
|
78 |
+
| 0.4351 | 19.81 | 2100 | 0.4985 | 0.1179 |
|
79 |
+
| 0.4169 | 20.75 | 2200 | 0.4712 | 0.1061 |
|
80 |
+
| 0.3957 | 21.7 | 2300 | 0.4613 | 0.0988 |
|
81 |
+
| 0.3885 | 22.64 | 2400 | 0.4610 | 0.1025 |
|
82 |
+
| 0.3827 | 23.58 | 2500 | 0.4509 | 0.0978 |
|
83 |
+
| 0.3468 | 24.53 | 2600 | 0.4549 | 0.0951 |
|
84 |
+
| 0.3451 | 25.47 | 2700 | 0.4556 | 0.1019 |
|
85 |
+
| 0.3234 | 26.42 | 2800 | 0.4554 | 0.1104 |
|
86 |
+
| 0.31 | 27.36 | 2900 | 0.4568 | 0.0988 |
|
87 |
+
| 0.3026 | 28.3 | 3000 | 0.4211 | 0.0965 |
|
88 |
+
| 0.2905 | 29.25 | 3100 | 0.4305 | 0.0911 |
|
89 |
+
| 0.2964 | 30.19 | 3200 | 0.4379 | 0.0990 |
|
90 |
+
| 0.302 | 31.13 | 3300 | 0.4379 | 0.0943 |
|
91 |
+
| 0.2576 | 32.08 | 3400 | 0.4293 | 0.0933 |
|
92 |
+
| 0.2771 | 33.02 | 3500 | 0.4239 | 0.0928 |
|
93 |
+
| 0.268 | 33.96 | 3600 | 0.4228 | 0.0894 |
|
94 |
+
| 0.2458 | 34.91 | 3700 | 0.4288 | 0.0899 |
|
95 |
+
| 0.2553 | 35.85 | 3800 | 0.4312 | 0.0966 |
|
96 |
+
| 0.2424 | 36.79 | 3900 | 0.4162 | 0.0917 |
|
97 |
+
| 0.2501 | 37.74 | 4000 | 0.4088 | 0.0840 |
|
98 |
+
| 0.2498 | 38.68 | 4100 | 0.4144 | 0.0921 |
|
99 |
+
| 0.2273 | 39.62 | 4200 | 0.4154 | 0.0863 |
|
100 |
+
| 0.23 | 40.57 | 4300 | 0.4157 | 0.0868 |
|
101 |
+
| 0.2409 | 41.51 | 4400 | 0.4033 | 0.0826 |
|
102 |
+
| 0.248 | 42.45 | 4500 | 0.4122 | 0.0847 |
|
103 |
+
| 0.218 | 43.4 | 4600 | 0.4052 | 0.0848 |
|
104 |
+
| 0.1979 | 44.34 | 4700 | 0.4063 | 0.0887 |
|
105 |
+
| 0.2091 | 45.28 | 4800 | 0.4078 | 0.0823 |
|
106 |
+
| 0.2097 | 46.23 | 4900 | 0.4177 | 0.0893 |
|
107 |
+
| 0.2017 | 47.17 | 5000 | 0.4295 | 0.0887 |
|
108 |
+
| 0.1899 | 48.11 | 5100 | 0.4177 | 0.0919 |
|
109 |
+
| 0.195 | 49.06 | 5200 | 0.4109 | 0.0880 |
|
110 |
+
| 0.179 | 50.0 | 5300 | 0.4089 | 0.0879 |
|
111 |
+
| 0.1773 | 50.94 | 5400 | 0.4071 | 0.0843 |
|
112 |
+
| 0.1889 | 51.89 | 5500 | 0.4072 | 0.0885 |
|
113 |
+
| 0.1987 | 52.83 | 5600 | 0.4033 | 0.0873 |
|
114 |
+
| 0.1979 | 53.77 | 5700 | 0.4033 | 0.0928 |
|
115 |
+
| 0.1777 | 54.72 | 5800 | 0.4077 | 0.0898 |
|
116 |
+
| 0.1742 | 55.66 | 5900 | 0.3969 | 0.0838 |
|
117 |
+
| 0.1678 | 56.6 | 6000 | 0.3997 | 0.0806 |
|
118 |
+
| 0.1726 | 57.55 | 6100 | 0.3978 | 0.0885 |
|
119 |
+
| 0.1602 | 58.49 | 6200 | 0.3967 | 0.0860 |
|
120 |
+
| 0.1681 | 59.43 | 6300 | 0.4039 | 0.0901 |
|
121 |
+
| 0.1594 | 60.38 | 6400 | 0.3992 | 0.0856 |
|
122 |
+
| 0.171 | 61.32 | 6500 | 0.4058 | 0.0890 |
|
123 |
+
| 0.1691 | 62.26 | 6600 | 0.4078 | 0.0842 |
|
124 |
+
| 0.1724 | 63.21 | 6700 | 0.4161 | 0.0903 |
|
125 |
+
| 0.172 | 64.15 | 6800 | 0.4121 | 0.0899 |
|
126 |
+
| 0.1717 | 65.09 | 6900 | 0.4111 | 0.0878 |
|
127 |
+
| 0.1775 | 66.04 | 7000 | 0.4109 | 0.0926 |
|
128 |
+
| 0.1607 | 66.98 | 7100 | 0.4080 | 0.0908 |
|
129 |
+
| 0.1606 | 67.92 | 7200 | 0.4070 | 0.0930 |
|
130 |
+
| 0.1801 | 68.87 | 7300 | 0.4096 | 0.0908 |
|
131 |
+
| 0.16 | 69.81 | 7400 | 0.4030 | 0.0933 |
|
132 |
+
| 0.1433 | 70.75 | 7500 | 0.4059 | 0.0920 |
|
133 |
+
| 0.1473 | 71.7 | 7600 | 0.4120 | 0.0979 |
|
134 |
+
| 0.1396 | 72.64 | 7700 | 0.4062 | 0.0922 |
|
135 |
+
| 0.1429 | 73.58 | 7800 | 0.4079 | 0.0899 |
|
136 |
+
| 0.1332 | 74.53 | 7900 | 0.4055 | 0.0851 |
|
137 |
+
| 0.1429 | 75.47 | 8000 | 0.4081 | 0.0922 |
|
138 |
+
| 0.1528 | 76.42 | 8100 | 0.4083 | 0.0853 |
|
139 |
+
| 0.1547 | 77.36 | 8200 | 0.4139 | 0.0945 |
|
140 |
+
| 0.1384 | 78.3 | 8300 | 0.4111 | 0.0933 |
|
141 |
+
| 0.1696 | 79.25 | 8400 | 0.4132 | 0.0943 |
|
142 |
+
| 0.1483 | 80.19 | 8500 | 0.4139 | 0.0906 |
|
143 |
+
| 0.1547 | 81.13 | 8600 | 0.4156 | 0.0959 |
|
144 |
+
| 0.149 | 82.08 | 8700 | 0.4119 | 0.0905 |
|
145 |
+
| 0.1294 | 83.02 | 8800 | 0.4145 | 0.0945 |
|
146 |
+
| 0.1383 | 83.96 | 8900 | 0.4151 | 0.0917 |
|
147 |
+
| 0.1356 | 84.91 | 9000 | 0.4165 | 0.0952 |
|
148 |
+
| 0.1491 | 85.85 | 9100 | 0.4188 | 0.0950 |
|
149 |
+
| 0.1395 | 86.79 | 9200 | 0.4174 | 0.0950 |
|
150 |
+
| 0.1439 | 87.74 | 9300 | 0.4151 | 0.0919 |
|
151 |
+
| 0.1421 | 88.68 | 9400 | 0.4152 | 0.0931 |
|
152 |
+
| 0.1443 | 89.62 | 9500 | 0.4160 | 0.0944 |
|
153 |
+
| 0.1429 | 90.57 | 9600 | 0.4138 | 0.0928 |
|
154 |
+
| 0.1397 | 91.51 | 9700 | 0.4149 | 0.0918 |
|
155 |
+
| 0.155 | 92.45 | 9800 | 0.4144 | 0.0915 |
|
156 |
+
| 0.1406 | 93.4 | 9900 | 0.4139 | 0.0921 |
|
157 |
+
| 0.1328 | 94.34 | 10000 | 0.4140 | 0.0929 |
|
158 |
+
| 0.1461 | 95.28 | 10100 | 0.4142 | 0.0914 |
|
159 |
+
| 0.1455 | 96.23 | 10200 | 0.4142 | 0.0913 |
|
160 |
+
| 0.155 | 97.17 | 10300 | 0.4139 | 0.0914 |
|
161 |
+
| 0.147 | 98.11 | 10400 | 0.4140 | 0.0918 |
|
162 |
+
| 0.1298 | 99.06 | 10500 | 0.4140 | 0.0917 |
|
163 |
+
| 0.1508 | 100.0 | 10600 | 0.4141 | 0.0914 |
|
164 |
+
|
165 |
+
|
166 |
+
### Framework versions
|
167 |
+
|
168 |
+
- Transformers 4.35.2
|
169 |
+
- Pytorch 1.13.1+cu117
|
170 |
+
- Datasets 2.12.0
|
171 |
+
- Tokenizers 0.14.1
|