Create modules/task_decomposer.py
Browse files- modules/task_decomposer.py +47 -0
modules/task_decomposer.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/task_decomposer.py
|
2 |
+
import os
|
3 |
+
from openai import AsyncOpenAI
|
4 |
+
|
5 |
+
client = AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
6 |
+
|
7 |
+
class TaskDecomposer:
|
8 |
+
def __init__(self):
|
9 |
+
pass
|
10 |
+
|
11 |
+
async def decompose(self, context):
|
12 |
+
base_prompt = self._build_prompt(context)
|
13 |
+
|
14 |
+
response = await client.chat.completions.create(
|
15 |
+
model="gpt-4o",
|
16 |
+
messages=[
|
17 |
+
{"role": "system", "content": "You are a task planner that breaks down multimodal user goals into executable subtasks."},
|
18 |
+
{"role": "user", "content": base_prompt}
|
19 |
+
]
|
20 |
+
)
|
21 |
+
|
22 |
+
content = response.choices[0].message.content
|
23 |
+
return self._parse_subtasks(content)
|
24 |
+
|
25 |
+
def _build_prompt(self, context):
|
26 |
+
description = []
|
27 |
+
if "text" in context:
|
28 |
+
description.append(f"Text: {context['text']}")
|
29 |
+
if "image_summary" in context:
|
30 |
+
description.append(f"Image summary: {context['image_summary']}")
|
31 |
+
if "video_summary" in context:
|
32 |
+
description.append(f"Video summary: {context['video_summary']}")
|
33 |
+
|
34 |
+
combined = "\n".join(description)
|
35 |
+
prompt = f"""
|
36 |
+
Given the following multimodal input, generate a list of clear, web-searchable subtasks needed to achieve the user's goal. Output the list in JSON array format, with each item as an object containing 'query', 'language', and 'modality'.
|
37 |
+
|
38 |
+
{combined}
|
39 |
+
"""
|
40 |
+
return prompt
|
41 |
+
|
42 |
+
def _parse_subtasks(self, llm_output):
|
43 |
+
import json
|
44 |
+
try:
|
45 |
+
return json.loads(llm_output)
|
46 |
+
except:
|
47 |
+
return []
|