turhancan97
commited on
Commit
·
0dfc384
1
Parent(s):
9ac8e4a
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 196.68 +/- 67.99
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faabb1a5cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faabb1a5d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faabb1a5dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faabb1a5e60>", "_build": "<function ActorCriticPolicy._build at 0x7faabb1a5ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7faabb1a5f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faabb1ab050>", "_predict": "<function ActorCriticPolicy._predict at 0x7faabb1ab0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faabb1ab170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faabb1ab200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faabb1ab290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faabb1786f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 557056, "_total_timesteps": 550000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651847325.5849853, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAHQD4fNpU88ZgZuR6mgbfCzR8+gxaEuAAAgD8AAIA/Zn5nu521Hz8j8fi9UYF4viUrhT2GyQM+AAAAAAAAAADm3L49UhjPOIAWd7kUSZm0D0FCuzGklTgAAIA/AACAP1oB0D0paCG6mjvruSH1iDxLc047bbhuvQAAgD8AAIA/YBM9vuHP3DvQ/KC59lVPN0mAfL28Gbw4AACAPwAAgD8GKwO+SKW6uo7ZhTohxCU2DxigO0KEmLkAAIA/AACAP7OQK76Mgwc/do/lPbrPir6wOyW9EBy9PQAAAAAAAAAAEHvGPvZaUztDdF69NC9ovrznQD3g9mW9AAAAAAAAAAB3ATy/GQ2Svh4Ppbk9orK4RjTFPlJRCTkAAIA/AACAP8Dqnr2z2Ik/amxJvknLvL7v0uK89TPwOwAAAAAAAAAA89/vPUGrzD4kaSO9RiV3vlhMFr0x0cY8AAAAAAAAAAAOHwa/Sy9GvgOpRbrsCQW5csR0PkAKsDkAAIA/AACAPzDIvL5wsS0/26sUvl+Ymr6nKS2+zTDHPQAAAAAAAAAA28Usv0qpVL4Cjvk6o6wcOI30R74Wwg84AAAAAAAAgD/NUNU8TUVqPk4t9D2wtl++3sDPvF1id7wAAAAAAAAAAG2SgL723WA7WjOPO1w4fbi4Lgm9aBpkOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMII/YJoBjKWkCUhpRSlIwBbJRN6AOMAXSUR0B7p/+zdDYzdX2UKGgGaAloD0MI/mK2ZNW6YUCUhpRSlGgVTegDaBZHQHuoP6TGHYZ1fZQoaAZoCWgPQwjW/PhLi4ZjQJSGlFKUaBVN6ANoFkdAe6sdnkDIR3V9lChoBmgJaA9DCFH2lnK+GlJAlIaUUpRoFU3oA2gWR0B7r3a9K28adX2UKGgGaAloD0MIeEfGavMsWkCUhpRSlGgVTegDaBZHQHu6W3BpHqh1fZQoaAZoCWgPQwhl4ICWrh9mQJSGlFKUaBVN6ANoFkdAe7wKaoddV3V9lChoBmgJaA9DCJoF2h3Sa2FAlIaUUpRoFU3oA2gWR0B8K3lnyup0dX2UKGgGaAloD0MINdHno4wYIMCUhpRSlGgVS8doFkdAfC00Mw1zhnV9lChoBmgJaA9DCLb1039WjGNAlIaUUpRoFU3oA2gWR0B8U4miQDFIdX2UKGgGaAloD0MIPwCpTZx0ScCUhpRSlGgVTQMCaBZHQHxfn4O+ZgJ1fZQoaAZoCWgPQwg50ENtG6RiQJSGlFKUaBVN6ANoFkdAfHcVHFxXGXV9lChoBmgJaA9DCLH4TWGlgjTAlIaUUpRoFUvDaBZHQHyDJXuE25x1fZQoaAZoCWgPQwg8FAX6xDVgQJSGlFKUaBVN6ANoFkdAfI7criEQG3V9lChoBmgJaA9DCI5bzM8NzWJAlIaUUpRoFU3oA2gWR0B8nn3h4t6HdX2UKGgGaAloD0MIFD5bBweHWUCUhpRSlGgVTegDaBZHQHylNovi97F1fZQoaAZoCWgPQwgOLh1znkFkQJSGlFKUaBVN6ANoFkdAfLc9jPOY6XV9lChoBmgJaA9DCBIWFXE6klxAlIaUUpRoFU3oA2gWR0B8wjES/TLGdX2UKGgGaAloD0MIWJHRAUkKXECUhpRSlGgVTegDaBZHQHzR7wBo24x1fZQoaAZoCWgPQwhseHqlLLNaQJSGlFKUaBVN6ANoFkdAfNOJ+DvmYHV9lChoBmgJaA9DCLg6AOIu52JAlIaUUpRoFU3oA2gWR0B81e5kK/mDdX2UKGgGaAloD0MIDqK1ok0cY0CUhpRSlGgVTegDaBZHQHzZnsw+MZR1fZQoaAZoCWgPQwgjumddo5JbQJSGlFKUaBVN6ANoFkdAfN7Ql8gIQnV9lChoBmgJaA9DCIuk3ehjVjXAlIaUUpRoFUvjaBZHQHzqYbOu7pV1fZQoaAZoCWgPQwheoKTAAvpdQJSGlFKUaBVN6ANoFkdAfO1PAwfyPXV9lChoBmgJaA9DCGo0uRgDRzTAlIaUUpRoFUvAaBZHQHz4smF8G9p1fZQoaAZoCWgPQwj6CPzh53c1wJSGlFKUaBVLuWgWR0B8/no7muDBdX2UKGgGaAloD0MI+U1hpYLdX0CUhpRSlGgVTegDaBZHQH1fhlxwQ191fZQoaAZoCWgPQwiXHk31ZFFgQJSGlFKUaBVN6ANoFkdAfWEQsPJ7s3V9lChoBmgJaA9DCJGBPLt8oVdAlIaUUpRoFU3oA2gWR0B9kAxVQyh0dX2UKGgGaAloD0MILVqAttWxX0CUhpRSlGgVTegDaBZHQH2nlCXyAhB1fZQoaAZoCWgPQwjX+Ez2zyNcQJSGlFKUaBVN6ANoFkdAfbPCTlkpZ3V9lChoBmgJaA9DCGtj7ISXSFxAlIaUUpRoFU3oA2gWR0B9vp92HLzPdX2UKGgGaAloD0MIavrsgOssRMCUhpRSlGgVS/VoFkdAfcrC1Z1V53V9lChoBmgJaA9DCBWpMLYQfWJAlIaUUpRoFU3oA2gWR0B9zSxUvPC3dX2UKGgGaAloD0MITfOOU/QPY0CUhpRSlGgVTegDaBZHQH3TanJkoWp1fZQoaAZoCWgPQwjSiQRTTepkQJSGlFKUaBVN6ANoFkdAfe5fgaWHDnV9lChoBmgJaA9DCBMsDmd+cmBAlIaUUpRoFU3oA2gWR0B9/tTMqz7edX2UKGgGaAloD0MIjV2iemvzYUCUhpRSlGgVTegDaBZHQH4BZHRTjvN1fZQoaAZoCWgPQwhQxvgweyVRwJSGlFKUaBVL7GgWR0B+Au0G/vfCdX2UKGgGaAloD0MIA+li08qoZECUhpRSlGgVTegDaBZHQH4KfCEYfnx1fZQoaAZoCWgPQwhE96xrNG1gQJSGlFKUaBVN6ANoFkdAfhdd2Pkq+nV9lChoBmgJaA9DCBnmBG1y6lhAlIaUUpRoFU3oA2gWR0B+Gq1jRUm2dX2UKGgGaAloD0MI/5JUphhfY0CUhpRSlGgVTegDaBZHQH4mIJRfnfV1fZQoaAZoCWgPQwhmEvWCz/pjQJSGlFKUaBVN6ANoFkdAfiumOU+s5nV9lChoBmgJaA9DCFXa4hqfil1AlIaUUpRoFU3oA2gWR0B+jE6dUbT+dX2UKGgGaAloD0MIdR+A1CZGYECUhpRSlGgVTegDaBZHQH6N/X9R77d1fZQoaAZoCWgPQwjS5c3hWrdrQJSGlFKUaBVNbQJoFkdAftKjc2zfJnV9lChoBmgJaA9DCE0Ttp8MsWNAlIaUUpRoFU3oA2gWR0B+0xwvQF9sdX2UKGgGaAloD0MIhugQOBKyaUCUhpRSlGgVTWEDaBZHQH7WWD+R5kd1fZQoaAZoCWgPQwhSJ6CJMLVgQJSGlFKUaBVN6ANoFkdAft484PwuunV9lChoBmgJaA9DCAZHyatzDlZAlIaUUpRoFU3oA2gWR0B+6FHlOoHcdX2UKGgGaAloD0MI9g1MbhR3XUCUhpRSlGgVTegDaBZHQH76Z6QeV9p1fZQoaAZoCWgPQwgJ4GbxYmHCv5SGlFKUaBVL7GgWR0B/BuFqSHM2dX2UKGgGaAloD0MI3bWEfNCbYECUhpRSlGgVTegDaBZHQH8SWi5/b0x1fZQoaAZoCWgPQwhqNLkYA3dAwJSGlFKUaBVL2mgWR0B/E+5BkZrIdX2UKGgGaAloD0MIE51lFqHpVkCUhpRSlGgVTegDaBZHQH8h6agElmh1fZQoaAZoCWgPQwjmdi/3yedkQJSGlFKUaBVN6ANoFkdAfyM54GD+SHV9lChoBmgJaA9DCO+tSExQPznAlIaUUpRoFUvuaBZHQH8oesgdOqN1fZQoaAZoCWgPQwgOar+1E7VdQJSGlFKUaBVN6ANoFkdAfymEHt4RmXV9lChoBmgJaA9DCAN3oE55z2RAlIaUUpRoFU3oA2gWR0B/M5yn1nM/dX2UKGgGaAloD0MIjgOvljuDY0CUhpRSlGgVTegDaBZHQH82LTx5LRN1fZQoaAZoCWgPQwiE1y5tOMQ5wJSGlFKUaBVL9WgWR0B/PvupjtojdX2UKGgGaAloD0MI3uaNk8L7W0CUhpRSlGgVTegDaBZHQH8/euV5a/11fZQoaAZoCWgPQwipwp/hTZBgQJSGlFKUaBVN6ANoFkdAf0QBqKxcFHV9lChoBmgJaA9DCMVYpl8ifiLAlIaUUpRoFUvSaBZHQH9GW5Dqnm91fZQoaAZoCWgPQwj3BInt7uEQQJSGlFKUaBVL1WgWR0B/TFnyup0fdX2UKGgGaAloD0MI1uQpq+mXYkCUhpRSlGgVTegDaBZHQH+gakAPuoh1fZQoaAZoCWgPQwhPWyOC8b5lQJSGlFKUaBVN6ANoFkdAf6G1vES/TXV9lChoBmgJaA9DCBaE8j6O+GBAlIaUUpRoFU3oA2gWR0B/45tGd7OWdX2UKGgGaAloD0MIs+20NSJpYUCUhpRSlGgVTegDaBZHQH/kERjBl+V1fZQoaAZoCWgPQwjA6V28H6NbQJSGlFKUaBVN6ANoFkdAf++moR7JGXV9lChoBmgJaA9DCJCF6BA4W2RAlIaUUpRoFU3oA2gWR0CADxRNRFZxdX2UKGgGaAloD0MInmFqSx18XUCUhpRSlGgVTegDaBZHQIAVgzvZyuJ1fZQoaAZoCWgPQwgMkGgCxUxhQJSGlFKUaBVN6ANoFkdAgB7H3lCCz3V9lChoBmgJaA9DCJG5Mqg2gl1AlIaUUpRoFU3oA2gWR0CAIvLrX18LdX2UKGgGaAloD0MI2ZQrvEthZECUhpRSlGgVTegDaBZHQIAqC9K28Zl1fZQoaAZoCWgPQwjttgvNddxdQJSGlFKUaBVN6ANoFkdAgCulM7EHdHV9lChoBmgJaA9DCGk3+piPsmJAlIaUUpRoFU3oA2gWR0CAMSlN1yNodX2UKGgGaAloD0MIrG9gcqPxXkCUhpRSlGgVTegDaBZHQIAxeO+7Dl51fZQoaAZoCWgPQwjUYYVbPjdlQJSGlFKUaBVN6ANoFkdAgDQq5LAYYXV9lChoBmgJaA9DCA+cM6K0mGFAlIaUUpRoFU3oA2gWR0CANZ8G9pRGdX2UKGgGaAloD0MI8xsmGqQMZkCUhpRSlGgVTegDaBZHQIA5QgA6uGN1fZQoaAZoCWgPQwiV7xmJ0KdiQJSGlFKUaBVN6ANoFkdAgD1tZ/0/W3V9lChoBmgJaA9DCHmQniIHymFAlIaUUpRoFU3oA2gWR0CAPhMZgogFdX2UKGgGaAloD0MIWKt2TUhrrD+UhpRSlGgVS+loFkdAgH9b7CSA6XV9lChoBmgJaA9DCEHw+PYuEmFAlIaUUpRoFU3oA2gWR0CAiTPUKArhdX2UKGgGaAloD0MIMEs7NZdpYkCUhpRSlGgVTegDaBZHQICJcqrilzl1fZQoaAZoCWgPQwhhFto5TX9oQJSGlFKUaBVNEgJoFkdAgIv4gq3EynV9lChoBmgJaA9DCI6R7BFqMmJAlIaUUpRoFU3oA2gWR0CAj3ssxwhodX2UKGgGaAloD0MIzLc+rLdJZ0CUhpRSlGgVTegDaBZHQICqHJeVs1t1fZQoaAZoCWgPQwhdiUD1D0NcQJSGlFKUaBVN6ANoFkdAgLHNdzGPxXV9lChoBmgJaA9DCDY7Un3nBVVAlIaUUpRoFU3oA2gWR0CAvI7zTWoWdX2UKGgGaAloD0MIvJaQD/pvYkCUhpRSlGgVTegDaBZHQIDBLTvy9VZ1fZQoaAZoCWgPQwjdXz3uW61bQJSGlFKUaBVN6ANoFkdAgMrF9a2Wp3V9lChoBmgJaA9DCG7fo/56uGJAlIaUUpRoFU3oA2gWR0CA0U1vVEuydX2UKGgGaAloD0MIQX3LnC5AX0CUhpRSlGgVTegDaBZHQIDRq+g13t91fZQoaAZoCWgPQwjTvrm/+q1gQJSGlFKUaBVN6ANoFkdAgNSdc0Ltu3V9lChoBmgJaA9DCO9WlugsXmVAlIaUUpRoFU3oA2gWR0CA1iGSpzcRdX2UKGgGaAloD0MIMEs7NZfwUECUhpRSlGgVTegDaBZHQIDZ1sJpnHx1fZQoaAZoCWgPQwgtCOV9HPthQJSGlFKUaBVN6ANoFkdAgN3EFGG21HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 136, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98fadd517e6db4996e50654fe7f0d276c8eafa6aec2cae921ab42137b748ef9e
|
3 |
+
size 144032
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faabb1a5cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faabb1a5d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faabb1a5dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faabb1a5e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faabb1a5ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faabb1a5f80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faabb1ab050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faabb1ab0e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faabb1ab170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faabb1ab200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faabb1ab290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7faabb1786f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 557056,
|
46 |
+
"_total_timesteps": 550000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651847325.5849853,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAHQD4fNpU88ZgZuR6mgbfCzR8+gxaEuAAAgD8AAIA/Zn5nu521Hz8j8fi9UYF4viUrhT2GyQM+AAAAAAAAAADm3L49UhjPOIAWd7kUSZm0D0FCuzGklTgAAIA/AACAP1oB0D0paCG6mjvruSH1iDxLc047bbhuvQAAgD8AAIA/YBM9vuHP3DvQ/KC59lVPN0mAfL28Gbw4AACAPwAAgD8GKwO+SKW6uo7ZhTohxCU2DxigO0KEmLkAAIA/AACAP7OQK76Mgwc/do/lPbrPir6wOyW9EBy9PQAAAAAAAAAAEHvGPvZaUztDdF69NC9ovrznQD3g9mW9AAAAAAAAAAB3ATy/GQ2Svh4Ppbk9orK4RjTFPlJRCTkAAIA/AACAP8Dqnr2z2Ik/amxJvknLvL7v0uK89TPwOwAAAAAAAAAA89/vPUGrzD4kaSO9RiV3vlhMFr0x0cY8AAAAAAAAAAAOHwa/Sy9GvgOpRbrsCQW5csR0PkAKsDkAAIA/AACAPzDIvL5wsS0/26sUvl+Ymr6nKS2+zTDHPQAAAAAAAAAA28Usv0qpVL4Cjvk6o6wcOI30R74Wwg84AAAAAAAAgD/NUNU8TUVqPk4t9D2wtl++3sDPvF1id7wAAAAAAAAAAG2SgL723WA7WjOPO1w4fbi4Lgm9aBpkOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.012829090909090901,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMII/YJoBjKWkCUhpRSlIwBbJRN6AOMAXSUR0B7p/+zdDYzdX2UKGgGaAloD0MI/mK2ZNW6YUCUhpRSlGgVTegDaBZHQHuoP6TGHYZ1fZQoaAZoCWgPQwjW/PhLi4ZjQJSGlFKUaBVN6ANoFkdAe6sdnkDIR3V9lChoBmgJaA9DCFH2lnK+GlJAlIaUUpRoFU3oA2gWR0B7r3a9K28adX2UKGgGaAloD0MIeEfGavMsWkCUhpRSlGgVTegDaBZHQHu6W3BpHqh1fZQoaAZoCWgPQwhl4ICWrh9mQJSGlFKUaBVN6ANoFkdAe7wKaoddV3V9lChoBmgJaA9DCJoF2h3Sa2FAlIaUUpRoFU3oA2gWR0B8K3lnyup0dX2UKGgGaAloD0MINdHno4wYIMCUhpRSlGgVS8doFkdAfC00Mw1zhnV9lChoBmgJaA9DCLb1039WjGNAlIaUUpRoFU3oA2gWR0B8U4miQDFIdX2UKGgGaAloD0MIPwCpTZx0ScCUhpRSlGgVTQMCaBZHQHxfn4O+ZgJ1fZQoaAZoCWgPQwg50ENtG6RiQJSGlFKUaBVN6ANoFkdAfHcVHFxXGXV9lChoBmgJaA9DCLH4TWGlgjTAlIaUUpRoFUvDaBZHQHyDJXuE25x1fZQoaAZoCWgPQwg8FAX6xDVgQJSGlFKUaBVN6ANoFkdAfI7criEQG3V9lChoBmgJaA9DCI5bzM8NzWJAlIaUUpRoFU3oA2gWR0B8nn3h4t6HdX2UKGgGaAloD0MIFD5bBweHWUCUhpRSlGgVTegDaBZHQHylNovi97F1fZQoaAZoCWgPQwgOLh1znkFkQJSGlFKUaBVN6ANoFkdAfLc9jPOY6XV9lChoBmgJaA9DCBIWFXE6klxAlIaUUpRoFU3oA2gWR0B8wjES/TLGdX2UKGgGaAloD0MIWJHRAUkKXECUhpRSlGgVTegDaBZHQHzR7wBo24x1fZQoaAZoCWgPQwhseHqlLLNaQJSGlFKUaBVN6ANoFkdAfNOJ+DvmYHV9lChoBmgJaA9DCLg6AOIu52JAlIaUUpRoFU3oA2gWR0B81e5kK/mDdX2UKGgGaAloD0MIDqK1ok0cY0CUhpRSlGgVTegDaBZHQHzZnsw+MZR1fZQoaAZoCWgPQwgjumddo5JbQJSGlFKUaBVN6ANoFkdAfN7Ql8gIQnV9lChoBmgJaA9DCIuk3ehjVjXAlIaUUpRoFUvjaBZHQHzqYbOu7pV1fZQoaAZoCWgPQwheoKTAAvpdQJSGlFKUaBVN6ANoFkdAfO1PAwfyPXV9lChoBmgJaA9DCGo0uRgDRzTAlIaUUpRoFUvAaBZHQHz4smF8G9p1fZQoaAZoCWgPQwj6CPzh53c1wJSGlFKUaBVLuWgWR0B8/no7muDBdX2UKGgGaAloD0MI+U1hpYLdX0CUhpRSlGgVTegDaBZHQH1fhlxwQ191fZQoaAZoCWgPQwiXHk31ZFFgQJSGlFKUaBVN6ANoFkdAfWEQsPJ7s3V9lChoBmgJaA9DCJGBPLt8oVdAlIaUUpRoFU3oA2gWR0B9kAxVQyh0dX2UKGgGaAloD0MILVqAttWxX0CUhpRSlGgVTegDaBZHQH2nlCXyAhB1fZQoaAZoCWgPQwjX+Ez2zyNcQJSGlFKUaBVN6ANoFkdAfbPCTlkpZ3V9lChoBmgJaA9DCGtj7ISXSFxAlIaUUpRoFU3oA2gWR0B9vp92HLzPdX2UKGgGaAloD0MIavrsgOssRMCUhpRSlGgVS/VoFkdAfcrC1Z1V53V9lChoBmgJaA9DCBWpMLYQfWJAlIaUUpRoFU3oA2gWR0B9zSxUvPC3dX2UKGgGaAloD0MITfOOU/QPY0CUhpRSlGgVTegDaBZHQH3TanJkoWp1fZQoaAZoCWgPQwjSiQRTTepkQJSGlFKUaBVN6ANoFkdAfe5fgaWHDnV9lChoBmgJaA9DCBMsDmd+cmBAlIaUUpRoFU3oA2gWR0B9/tTMqz7edX2UKGgGaAloD0MIjV2iemvzYUCUhpRSlGgVTegDaBZHQH4BZHRTjvN1fZQoaAZoCWgPQwhQxvgweyVRwJSGlFKUaBVL7GgWR0B+Au0G/vfCdX2UKGgGaAloD0MIA+li08qoZECUhpRSlGgVTegDaBZHQH4KfCEYfnx1fZQoaAZoCWgPQwhE96xrNG1gQJSGlFKUaBVN6ANoFkdAfhdd2Pkq+nV9lChoBmgJaA9DCBnmBG1y6lhAlIaUUpRoFU3oA2gWR0B+Gq1jRUm2dX2UKGgGaAloD0MI/5JUphhfY0CUhpRSlGgVTegDaBZHQH4mIJRfnfV1fZQoaAZoCWgPQwhmEvWCz/pjQJSGlFKUaBVN6ANoFkdAfiumOU+s5nV9lChoBmgJaA9DCFXa4hqfil1AlIaUUpRoFU3oA2gWR0B+jE6dUbT+dX2UKGgGaAloD0MIdR+A1CZGYECUhpRSlGgVTegDaBZHQH6N/X9R77d1fZQoaAZoCWgPQwjS5c3hWrdrQJSGlFKUaBVNbQJoFkdAftKjc2zfJnV9lChoBmgJaA9DCE0Ttp8MsWNAlIaUUpRoFU3oA2gWR0B+0xwvQF9sdX2UKGgGaAloD0MIhugQOBKyaUCUhpRSlGgVTWEDaBZHQH7WWD+R5kd1fZQoaAZoCWgPQwhSJ6CJMLVgQJSGlFKUaBVN6ANoFkdAft484PwuunV9lChoBmgJaA9DCAZHyatzDlZAlIaUUpRoFU3oA2gWR0B+6FHlOoHcdX2UKGgGaAloD0MI9g1MbhR3XUCUhpRSlGgVTegDaBZHQH76Z6QeV9p1fZQoaAZoCWgPQwgJ4GbxYmHCv5SGlFKUaBVL7GgWR0B/BuFqSHM2dX2UKGgGaAloD0MI3bWEfNCbYECUhpRSlGgVTegDaBZHQH8SWi5/b0x1fZQoaAZoCWgPQwhqNLkYA3dAwJSGlFKUaBVL2mgWR0B/E+5BkZrIdX2UKGgGaAloD0MIE51lFqHpVkCUhpRSlGgVTegDaBZHQH8h6agElmh1fZQoaAZoCWgPQwjmdi/3yedkQJSGlFKUaBVN6ANoFkdAfyM54GD+SHV9lChoBmgJaA9DCO+tSExQPznAlIaUUpRoFUvuaBZHQH8oesgdOqN1fZQoaAZoCWgPQwgOar+1E7VdQJSGlFKUaBVN6ANoFkdAfymEHt4RmXV9lChoBmgJaA9DCAN3oE55z2RAlIaUUpRoFU3oA2gWR0B/M5yn1nM/dX2UKGgGaAloD0MIjgOvljuDY0CUhpRSlGgVTegDaBZHQH82LTx5LRN1fZQoaAZoCWgPQwiE1y5tOMQ5wJSGlFKUaBVL9WgWR0B/PvupjtojdX2UKGgGaAloD0MI3uaNk8L7W0CUhpRSlGgVTegDaBZHQH8/euV5a/11fZQoaAZoCWgPQwipwp/hTZBgQJSGlFKUaBVN6ANoFkdAf0QBqKxcFHV9lChoBmgJaA9DCMVYpl8ifiLAlIaUUpRoFUvSaBZHQH9GW5Dqnm91fZQoaAZoCWgPQwj3BInt7uEQQJSGlFKUaBVL1WgWR0B/TFnyup0fdX2UKGgGaAloD0MI1uQpq+mXYkCUhpRSlGgVTegDaBZHQH+gakAPuoh1fZQoaAZoCWgPQwhPWyOC8b5lQJSGlFKUaBVN6ANoFkdAf6G1vES/TXV9lChoBmgJaA9DCBaE8j6O+GBAlIaUUpRoFU3oA2gWR0B/45tGd7OWdX2UKGgGaAloD0MIs+20NSJpYUCUhpRSlGgVTegDaBZHQH/kERjBl+V1fZQoaAZoCWgPQwjA6V28H6NbQJSGlFKUaBVN6ANoFkdAf++moR7JGXV9lChoBmgJaA9DCJCF6BA4W2RAlIaUUpRoFU3oA2gWR0CADxRNRFZxdX2UKGgGaAloD0MInmFqSx18XUCUhpRSlGgVTegDaBZHQIAVgzvZyuJ1fZQoaAZoCWgPQwgMkGgCxUxhQJSGlFKUaBVN6ANoFkdAgB7H3lCCz3V9lChoBmgJaA9DCJG5Mqg2gl1AlIaUUpRoFU3oA2gWR0CAIvLrX18LdX2UKGgGaAloD0MI2ZQrvEthZECUhpRSlGgVTegDaBZHQIAqC9K28Zl1fZQoaAZoCWgPQwjttgvNddxdQJSGlFKUaBVN6ANoFkdAgCulM7EHdHV9lChoBmgJaA9DCGk3+piPsmJAlIaUUpRoFU3oA2gWR0CAMSlN1yNodX2UKGgGaAloD0MIrG9gcqPxXkCUhpRSlGgVTegDaBZHQIAxeO+7Dl51fZQoaAZoCWgPQwjUYYVbPjdlQJSGlFKUaBVN6ANoFkdAgDQq5LAYYXV9lChoBmgJaA9DCA+cM6K0mGFAlIaUUpRoFU3oA2gWR0CANZ8G9pRGdX2UKGgGaAloD0MI8xsmGqQMZkCUhpRSlGgVTegDaBZHQIA5QgA6uGN1fZQoaAZoCWgPQwiV7xmJ0KdiQJSGlFKUaBVN6ANoFkdAgD1tZ/0/W3V9lChoBmgJaA9DCHmQniIHymFAlIaUUpRoFU3oA2gWR0CAPhMZgogFdX2UKGgGaAloD0MIWKt2TUhrrD+UhpRSlGgVS+loFkdAgH9b7CSA6XV9lChoBmgJaA9DCEHw+PYuEmFAlIaUUpRoFU3oA2gWR0CAiTPUKArhdX2UKGgGaAloD0MIMEs7NZdpYkCUhpRSlGgVTegDaBZHQICJcqrilzl1fZQoaAZoCWgPQwhhFto5TX9oQJSGlFKUaBVNEgJoFkdAgIv4gq3EynV9lChoBmgJaA9DCI6R7BFqMmJAlIaUUpRoFU3oA2gWR0CAj3ssxwhodX2UKGgGaAloD0MIzLc+rLdJZ0CUhpRSlGgVTegDaBZHQICqHJeVs1t1fZQoaAZoCWgPQwhdiUD1D0NcQJSGlFKUaBVN6ANoFkdAgLHNdzGPxXV9lChoBmgJaA9DCDY7Un3nBVVAlIaUUpRoFU3oA2gWR0CAvI7zTWoWdX2UKGgGaAloD0MIvJaQD/pvYkCUhpRSlGgVTegDaBZHQIDBLTvy9VZ1fZQoaAZoCWgPQwjdXz3uW61bQJSGlFKUaBVN6ANoFkdAgMrF9a2Wp3V9lChoBmgJaA9DCG7fo/56uGJAlIaUUpRoFU3oA2gWR0CA0U1vVEuydX2UKGgGaAloD0MIQX3LnC5AX0CUhpRSlGgVTegDaBZHQIDRq+g13t91fZQoaAZoCWgPQwjTvrm/+q1gQJSGlFKUaBVN6ANoFkdAgNSdc0Ltu3V9lChoBmgJaA9DCO9WlugsXmVAlIaUUpRoFU3oA2gWR0CA1iGSpzcRdX2UKGgGaAloD0MIMEs7NZfwUECUhpRSlGgVTegDaBZHQIDZ1sJpnHx1fZQoaAZoCWgPQwgtCOV9HPthQJSGlFKUaBVN6ANoFkdAgN3EFGG21HVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 136,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f12e8eb63741a67d6f4ec8811bd8176265314f8922241948a9837af8edc6c67
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48ef9c1e6348eb6e7e9c234a388f0c0bc5acdb4cc892e800d022455085116ff7
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1802783373f386438ec1404fcc420dfc18d902a75f24192eac4d90dd0dbd8771
|
3 |
+
size 235983
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 196.68392081980477, "std_reward": 67.98564703744637, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T14:41:21.840109"}
|