Huggingface course unit 1
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 236.97 +/- 22.14
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3ae71c9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3ae71ca70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3ae71cb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3ae71cb90>", "_build": "<function ActorCriticPolicy._build at 0x7fd3ae71cc20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd3ae71ccb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3ae71cd40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd3ae71cdd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3ae71ce60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3ae71cef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3ae71cf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd3ae7704e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653328528.2928677, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmslIvFJQq7lV3bO7agYLNSk+Y7pQfG20AACAPwAAgD9AotW9rmveutONszrXm4s5U1wZO7MdV7kAAIA/AACAP2p+dr7v3Dg/HneAPraXxb5BX4W+yYmBPgAAAAAAAAAApi+CPRT0kbosDEi8XxqitUfldDnOPRU1AACAPwAAgD9zi8g94UyPuoHaIzhrlzMzJBL7uRa9PbcAAIA/AACAP+ZPND2PknS6Ck2pvE5KbTVGoG27C/zXtAAAgD8AAIA/gGngvRQu97ilaoI74+uvNi2iGDszUJi6AACAPwAAgD+A9Du9e+SCuk3QI7vpFo+2MlptOwJsOzoAAIA/AACAP+b0OT7UJZ28AlPaujNMHzkN9Ay+poIPOgAAgD8AAIA/jRsyvhiOvj/J1SC/0ytdvo/xV752Lz2+AAAAAAAAAAAAXg+9XB9Bug5rXjuKTYo4Mzqgu6Z1B7oAAIA/AACAP2Zw9jxcu026RtH4upzZrraJ2ks6HY0POgAAgD8AAIA/gNFAPimEfbpqmIy7xvfWOFazBLvCPhM6AACAPwAAgD/zjs+9ww0uuicGJzpfNC42RhrsunfiQ7kAAIA/AACAP82bVb0pMES6MH3VvAYO1TafCU273EY+tgAAgD8AAIA/MxeyPYsYND+3OpQ7XtqwvmAFDj5q8D88AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3PEmv0X2VkCUhpRSlIwBbJRN6AOMAXSUR0CEBYnOSntOdX2UKGgGaAloD0MI2SQ/4tfYYECUhpRSlGgVTegDaBZHQIQHjtoi9qV1fZQoaAZoCWgPQwioVl9dlTRmQJSGlFKUaBVN6ANoFkdAhAxA0bcXWXV9lChoBmgJaA9DCJoK8Ug8rWJAlIaUUpRoFU3oA2gWR0CEKxzreIl/dX2UKGgGaAloD0MII2k3+hhUYECUhpRSlGgVTegDaBZHQIRgAqAjIJZ1fZQoaAZoCWgPQwjvHMpQFUBhQJSGlFKUaBVN6ANoFkdAhGJV8CxNZnV9lChoBmgJaA9DCMLaGDvh7WBAlIaUUpRoFU3oA2gWR0CEZje3x4IKdX2UKGgGaAloD0MII028A7zMYkCUhpRSlGgVTegDaBZHQIRsjHp8neB1fZQoaAZoCWgPQwh8RiI0ggJZQJSGlFKUaBVN6ANoFkdAhG2cpLEk0XV9lChoBmgJaA9DCMMRpFLsGmVAlIaUUpRoFU3oA2gWR0CEb+BGx2SudX2UKGgGaAloD0MIQGmoUUjxYECUhpRSlGgVTegDaBZHQIR5GxSpBHF1fZQoaAZoCWgPQwjKb9HJUtlcQJSGlFKUaBVN6ANoFkdAhH9UT+NtInV9lChoBmgJaA9DCP/sR4rIMP6/lIaUUpRoFUunaBZHQISANbu+h5B1fZQoaAZoCWgPQwiADYgQ1/BgwJSGlFKUaBVL1GgWR0CEhBAv+OwQdX2UKGgGaAloD0MII9xkVBl1U0CUhpRSlGgVTegDaBZHQISJ8/W1+iJ1fZQoaAZoCWgPQwg9murJfIRhQJSGlFKUaBVN6ANoFkdAhIppA2Q4j3V9lChoBmgJaA9DCJUnEHaKLmBAlIaUUpRoFU3oA2gWR0CEkWPoV2zOdX2UKGgGaAloD0MIOPQWD+/DYkCUhpRSlGgVTegDaBZHQISRsP1+RYB1fZQoaAZoCWgPQwhFuMmoMmwZQJSGlFKUaBVL0mgWR0CElfjCHh0hdX2UKGgGaAloD0MI/rYnSGw8X0CUhpRSlGgVTegDaBZHQISfySV4X411fZQoaAZoCWgPQwjkwKvlzoJdQJSGlFKUaBVN6ANoFkdAhKGrZamoBXV9lChoBmgJaA9DCNF6+DJRemJAlIaUUpRoFU3oA2gWR0CEpiIvalDXdX2UKGgGaAloD0MIOSf20D5yYkCUhpRSlGgVTegDaBZHQITDPAoG6f91fZQoaAZoCWgPQwgDzefc7cZJQJSGlFKUaBVN6ANoFkdAhPfutfXws3V9lChoBmgJaA9DCOTbuwZ9hWRAlIaUUpRoFU3oA2gWR0CE+j7AtWdVdX2UKGgGaAloD0MIke7nFOQ1V0CUhpRSlGgVTegDaBZHQIT+Hddmg8N1fZQoaAZoCWgPQwhE96xrNC9hQJSGlFKUaBVN6ANoFkdAhQhYTTOPenV9lChoBmgJaA9DCK8iowOS+1dAlIaUUpRoFU3oA2gWR0CFExTbWVeKdX2UKGgGaAloD0MIcVga+NHYYUCUhpRSlGgVTegDaBZHQIUaC9XcQAd1fZQoaAZoCWgPQwiKyoY1lXVgQJSGlFKUaBVN6ANoFkdAhR+bfpD/l3V9lChoBmgJaA9DCCsYldQJkVpAlIaUUpRoFU3oA2gWR0CFJdDpkf9xdX2UKGgGaAloD0MIT1lN15N0ZECUhpRSlGgVTegDaBZHQIUmTwnYxtZ1fZQoaAZoCWgPQwggCJChYzcmwJSGlFKUaBVLvWgWR0CFKjmjCYTkdX2UKGgGaAloD0MImBQfn5BoWUCUhpRSlGgVTegDaBZHQIUuG0eEIxB1fZQoaAZoCWgPQwh+NQcI5tFhQJSGlFKUaBVN6ANoFkdAhS5ywwCbMHV9lChoBmgJaA9DCDUqcLINPBRAlIaUUpRoFUueaBZHQIUxdet0V8F1fZQoaAZoCWgPQwhYqDXNO01iQJSGlFKUaBVN6ANoFkdAhTMQ1zhgmnV9lChoBmgJaA9DCAjJAiZwUy5AlIaUUpRoFUuqaBZHQIU4NLcsUZh1fZQoaAZoCWgPQwi/DMaIROlAQJSGlFKUaBVLpGgWR0CFOy5e7cwhdX2UKGgGaAloD0MIKo2Y2ed+XUCUhpRSlGgVTegDaBZHQIU9Eh3aBZp1fZQoaAZoCWgPQwhWSs/0ktRiQJSGlFKUaBVN6ANoFkdAhT6/5k9U0nV9lChoBmgJaA9DCKGjVS3pgD5AlIaUUpRoFUuvaBZHQIU/lKXfIjp1fZQoaAZoCWgPQwjZzYx+NLNeQJSGlFKUaBVN6ANoFkdAhULSvkili3V9lChoBmgJaA9DCNQQVfgzvD1AlIaUUpRoFUuzaBZHQIVNoI6bONZ1fZQoaAZoCWgPQwiRfvs6cKdgQJSGlFKUaBVN6ANoFkdAhVwDUd7v5XV9lChoBmgJaA9DCM9Lxca8HGJAlIaUUpRoFU3oA2gWR0CFaguZCv5hdX2UKGgGaAloD0MIYAZjRKLoYECUhpRSlGgVTegDaBZHQIWRLUCq6vt1fZQoaAZoCWgPQwju68A5IxVjQJSGlFKUaBVN6ANoFkdAhZRzUZvUBnV9lChoBmgJaA9DCOhsAaH18EhAlIaUUpRoFUumaBZHQIWU+LNwBHV1fZQoaAZoCWgPQwiad5yiI/dkQJSGlFKUaBVN6ANoFkdAhZ0DtG/etXV9lChoBmgJaA9DCKxwy0dSRGNAlIaUUpRoFU3oA2gWR0CFrTQl8gIQdX2UKGgGaAloD0MI9wKzQpEsT0CUhpRSlGgVS75oFkdAhbOVbqyGBXV9lChoBmgJaA9DCE/N5QZDk0hAlIaUUpRoFU3oA2gWR0CFuV7JGOMmdX2UKGgGaAloD0MIV3bB4JqTZECUhpRSlGgVTegDaBZHQIXDiOktVaR1fZQoaAZoCWgPQwjgRzXs9+5jQJSGlFKUaBVN6ANoFkdAhceyhakhzXV9lChoBmgJaA9DCGOYE7TJ41xAlIaUUpRoFU3oA2gWR0CFycCL/CIldX2UKGgGaAloD0MILdDukOITYkCUhpRSlGgVTegDaBZHQIXQFgnc+JR1fZQoaAZoCWgPQwg74/vi0slnQJSGlFKUaBVN6ANoFkdAhdOqAz544nV9lChoBmgJaA9DCAQg7upVTWJAlIaUUpRoFU3oA2gWR0CF1+AVfu1GdX2UKGgGaAloD0MIfZdSlwxoZECUhpRSlGgVTegDaBZHQIXY1du5z5p1fZQoaAZoCWgPQwgPYJFfPx9mQJSGlFKUaBVN6ANoFkdAhdx/9P1tf3V9lChoBmgJaA9DCI3PZP88ATFAlIaUUpRoFUuwaBZHQIXjmdVea8Z1fZQoaAZoCWgPQwhtcCL6tW9iQJSGlFKUaBVN6ANoFkdAhelXmV7hN3V9lChoBmgJaA9DCP8DrFW7FWFAlIaUUpRoFU3oA2gWR0CGCCJAMUh3dX2UKGgGaAloD0MIx/SEJR6NYUCUhpRSlGgVTegDaBZHQIYKoi9qUNd1fZQoaAZoCWgPQwi5ADRKl1ZjQJSGlFKUaBVN6ANoFkdAhjPDps41g3V9lChoBmgJaA9DCBiV1AlolVVAlIaUUpRoFU3oA2gWR0CGNGOuq3mWdX2UKGgGaAloD0MIhV5/Ep+oVUCUhpRSlGgVS6loFkdAhkljgQ6IWXV9lChoBmgJaA9DCJcbDHXYwmRAlIaUUpRoFU3oA2gWR0CGUFRdhRZVdX2UKGgGaAloD0MI1bDfE2v8YECUhpRSlGgVTegDaBZHQIZXR9PUKAt1fZQoaAZoCWgPQwjhfyvZsQliQJSGlFKUaBVN6ANoFkdAhlz4BFNL13V9lChoBmgJaA9DCKt3uB0aqWBAlIaUUpRoFU3oA2gWR0CGZsthd+ocdX2UKGgGaAloD0MI2gJC62EIZUCUhpRSlGgVTegDaBZHQIZqq+N96Tp1fZQoaAZoCWgPQwgD7KNTVwlgQJSGlFKUaBVN6ANoFkdAhmyGvGIbfnV9lChoBmgJaA9DCKX3ja+9nmdAlIaUUpRoFU3oA2gWR0CGdYw8nuzAdX2UKGgGaAloD0MIgZICC2D4Y0CUhpRSlGgVTegDaBZHQIZ5qHM2WIJ1fZQoaAZoCWgPQwiBBMWPMaNhQJSGlFKUaBVN6ANoFkdAhnqpQk5ZKXV9lChoBmgJaA9DCAuallgZlVxAlIaUUpRoFU3oA2gWR0CGfmQV9F4LdX2UKGgGaAloD0MINnLdlPKgU0CUhpRSlGgVS6hoFkdAhn8Zc1O0s3V9lChoBmgJaA9DCBAiGXJsGFRAlIaUUpRoFU3oA2gWR0CGhSWeHzpYdX2UKGgGaAloD0MIpbvrbMgtY0CUhpRSlGgVTegDaBZHQIaKFUXHim51fZQoaAZoCWgPQwiLM4Y5wV1iQJSGlFKUaBVN6ANoFkdAhqRPvBrN4nV9lChoBmgJaA9DCNB8zt0uVWNAlIaUUpRoFU3oA2gWR0CGplFz+3pfdX2UKGgGaAloD0MIxJeJIqQ6X0CUhpRSlGgVTegDaBZHQIaqSmKqGUR1fZQoaAZoCWgPQwgTmiSWlIhdQJSGlFKUaBVN6ANoFkdAhuIOLR8c/HV9lChoBmgJaA9DCOzAOSNKd2NAlIaUUpRoFU3oA2gWR0CG6B1dPci4dX2UKGgGaAloD0MIr0Sg+ocvYkCUhpRSlGgVTegDaBZHQIbuYFHJ9y91fZQoaAZoCWgPQwj59q5B3xNjQJSGlFKUaBVN6ANoFkdAhvOyauwHJXV9lChoBmgJaA9DCEF/oUeM7GNAlIaUUpRoFU3oA2gWR0CG/Ni5NGmUdX2UKGgGaAloD0MIiiDOwwm7X0CUhpRSlGgVTegDaBZHQIcAhFI/Z/V1fZQoaAZoCWgPQwhdb5upEJNeQJSGlFKUaBVN6ANoFkdAhww/mT1TSHV9lChoBmgJaA9DCGhBKO/jMWNAlIaUUpRoFU3oA2gWR0CHEIvjfek6dX2UKGgGaAloD0MIEXAIVepbYkCUhpRSlGgVTegDaBZHQIcRnwI+nqF1fZQoaAZoCWgPQwgYfJqTl7NlQJSGlFKUaBVN6ANoFkdAhxXpGOMl1XV9lChoBmgJaA9DCLpoyHiUVmJAlIaUUpRoFU3oA2gWR0CHFq+N96TodX2UKGgGaAloD0MIgzC3e7mwXECUhpRSlGgVTegDaBZHQIcdVkMCtA91fZQoaAZoCWgPQwj1oKAUrWhiQJSGlFKUaBVN6ANoFkdAhyM2USqU/3V9lChoBmgJaA9DCMjsLHqnzV5AlIaUUpRoFU3oA2gWR0CHQOZNwiqydX2UKGgGaAloD0MI+yDLgomDYECUhpRSlGgVTegDaBZHQIdDUCgbp/x1fZQoaAZoCWgPQwj0v1yLFp9ZQJSGlFKUaBVN6ANoFkdAh0gKcmShanVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:059e9c8c2d86e4470c6ce05b8ea76ad86fd43ad315ef08f6209b39baacdbdff1
|
3 |
+
size 144140
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3ae71c9e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3ae71ca70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3ae71cb00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3ae71cb90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd3ae71cc20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd3ae71ccb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3ae71cd40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd3ae71cdd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3ae71ce60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3ae71cef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3ae71cf80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd3ae7704e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653328528.2928677,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmslIvFJQq7lV3bO7agYLNSk+Y7pQfG20AACAPwAAgD9AotW9rmveutONszrXm4s5U1wZO7MdV7kAAIA/AACAP2p+dr7v3Dg/HneAPraXxb5BX4W+yYmBPgAAAAAAAAAApi+CPRT0kbosDEi8XxqitUfldDnOPRU1AACAPwAAgD9zi8g94UyPuoHaIzhrlzMzJBL7uRa9PbcAAIA/AACAP+ZPND2PknS6Ck2pvE5KbTVGoG27C/zXtAAAgD8AAIA/gGngvRQu97ilaoI74+uvNi2iGDszUJi6AACAPwAAgD+A9Du9e+SCuk3QI7vpFo+2MlptOwJsOzoAAIA/AACAP+b0OT7UJZ28AlPaujNMHzkN9Ay+poIPOgAAgD8AAIA/jRsyvhiOvj/J1SC/0ytdvo/xV752Lz2+AAAAAAAAAAAAXg+9XB9Bug5rXjuKTYo4Mzqgu6Z1B7oAAIA/AACAP2Zw9jxcu026RtH4upzZrraJ2ks6HY0POgAAgD8AAIA/gNFAPimEfbpqmIy7xvfWOFazBLvCPhM6AACAPwAAgD/zjs+9ww0uuicGJzpfNC42RhrsunfiQ7kAAIA/AACAP82bVb0pMES6MH3VvAYO1TafCU273EY+tgAAgD8AAIA/MxeyPYsYND+3OpQ7XtqwvmAFDj5q8D88AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3PEmv0X2VkCUhpRSlIwBbJRN6AOMAXSUR0CEBYnOSntOdX2UKGgGaAloD0MI2SQ/4tfYYECUhpRSlGgVTegDaBZHQIQHjtoi9qV1fZQoaAZoCWgPQwioVl9dlTRmQJSGlFKUaBVN6ANoFkdAhAxA0bcXWXV9lChoBmgJaA9DCJoK8Ug8rWJAlIaUUpRoFU3oA2gWR0CEKxzreIl/dX2UKGgGaAloD0MII2k3+hhUYECUhpRSlGgVTegDaBZHQIRgAqAjIJZ1fZQoaAZoCWgPQwjvHMpQFUBhQJSGlFKUaBVN6ANoFkdAhGJV8CxNZnV9lChoBmgJaA9DCMLaGDvh7WBAlIaUUpRoFU3oA2gWR0CEZje3x4IKdX2UKGgGaAloD0MII028A7zMYkCUhpRSlGgVTegDaBZHQIRsjHp8neB1fZQoaAZoCWgPQwh8RiI0ggJZQJSGlFKUaBVN6ANoFkdAhG2cpLEk0XV9lChoBmgJaA9DCMMRpFLsGmVAlIaUUpRoFU3oA2gWR0CEb+BGx2SudX2UKGgGaAloD0MIQGmoUUjxYECUhpRSlGgVTegDaBZHQIR5GxSpBHF1fZQoaAZoCWgPQwjKb9HJUtlcQJSGlFKUaBVN6ANoFkdAhH9UT+NtInV9lChoBmgJaA9DCP/sR4rIMP6/lIaUUpRoFUunaBZHQISANbu+h5B1fZQoaAZoCWgPQwiADYgQ1/BgwJSGlFKUaBVL1GgWR0CEhBAv+OwQdX2UKGgGaAloD0MII9xkVBl1U0CUhpRSlGgVTegDaBZHQISJ8/W1+iJ1fZQoaAZoCWgPQwg9murJfIRhQJSGlFKUaBVN6ANoFkdAhIppA2Q4j3V9lChoBmgJaA9DCJUnEHaKLmBAlIaUUpRoFU3oA2gWR0CEkWPoV2zOdX2UKGgGaAloD0MIOPQWD+/DYkCUhpRSlGgVTegDaBZHQISRsP1+RYB1fZQoaAZoCWgPQwhFuMmoMmwZQJSGlFKUaBVL0mgWR0CElfjCHh0hdX2UKGgGaAloD0MI/rYnSGw8X0CUhpRSlGgVTegDaBZHQISfySV4X411fZQoaAZoCWgPQwjkwKvlzoJdQJSGlFKUaBVN6ANoFkdAhKGrZamoBXV9lChoBmgJaA9DCNF6+DJRemJAlIaUUpRoFU3oA2gWR0CEpiIvalDXdX2UKGgGaAloD0MIOSf20D5yYkCUhpRSlGgVTegDaBZHQITDPAoG6f91fZQoaAZoCWgPQwgDzefc7cZJQJSGlFKUaBVN6ANoFkdAhPfutfXws3V9lChoBmgJaA9DCOTbuwZ9hWRAlIaUUpRoFU3oA2gWR0CE+j7AtWdVdX2UKGgGaAloD0MIke7nFOQ1V0CUhpRSlGgVTegDaBZHQIT+Hddmg8N1fZQoaAZoCWgPQwhE96xrNC9hQJSGlFKUaBVN6ANoFkdAhQhYTTOPenV9lChoBmgJaA9DCK8iowOS+1dAlIaUUpRoFU3oA2gWR0CFExTbWVeKdX2UKGgGaAloD0MIcVga+NHYYUCUhpRSlGgVTegDaBZHQIUaC9XcQAd1fZQoaAZoCWgPQwiKyoY1lXVgQJSGlFKUaBVN6ANoFkdAhR+bfpD/l3V9lChoBmgJaA9DCCsYldQJkVpAlIaUUpRoFU3oA2gWR0CFJdDpkf9xdX2UKGgGaAloD0MIT1lN15N0ZECUhpRSlGgVTegDaBZHQIUmTwnYxtZ1fZQoaAZoCWgPQwggCJChYzcmwJSGlFKUaBVLvWgWR0CFKjmjCYTkdX2UKGgGaAloD0MImBQfn5BoWUCUhpRSlGgVTegDaBZHQIUuG0eEIxB1fZQoaAZoCWgPQwh+NQcI5tFhQJSGlFKUaBVN6ANoFkdAhS5ywwCbMHV9lChoBmgJaA9DCDUqcLINPBRAlIaUUpRoFUueaBZHQIUxdet0V8F1fZQoaAZoCWgPQwhYqDXNO01iQJSGlFKUaBVN6ANoFkdAhTMQ1zhgmnV9lChoBmgJaA9DCAjJAiZwUy5AlIaUUpRoFUuqaBZHQIU4NLcsUZh1fZQoaAZoCWgPQwi/DMaIROlAQJSGlFKUaBVLpGgWR0CFOy5e7cwhdX2UKGgGaAloD0MIKo2Y2ed+XUCUhpRSlGgVTegDaBZHQIU9Eh3aBZp1fZQoaAZoCWgPQwhWSs/0ktRiQJSGlFKUaBVN6ANoFkdAhT6/5k9U0nV9lChoBmgJaA9DCKGjVS3pgD5AlIaUUpRoFUuvaBZHQIU/lKXfIjp1fZQoaAZoCWgPQwjZzYx+NLNeQJSGlFKUaBVN6ANoFkdAhULSvkili3V9lChoBmgJaA9DCNQQVfgzvD1AlIaUUpRoFUuzaBZHQIVNoI6bONZ1fZQoaAZoCWgPQwiRfvs6cKdgQJSGlFKUaBVN6ANoFkdAhVwDUd7v5XV9lChoBmgJaA9DCM9Lxca8HGJAlIaUUpRoFU3oA2gWR0CFaguZCv5hdX2UKGgGaAloD0MIYAZjRKLoYECUhpRSlGgVTegDaBZHQIWRLUCq6vt1fZQoaAZoCWgPQwju68A5IxVjQJSGlFKUaBVN6ANoFkdAhZRzUZvUBnV9lChoBmgJaA9DCOhsAaH18EhAlIaUUpRoFUumaBZHQIWU+LNwBHV1fZQoaAZoCWgPQwiad5yiI/dkQJSGlFKUaBVN6ANoFkdAhZ0DtG/etXV9lChoBmgJaA9DCKxwy0dSRGNAlIaUUpRoFU3oA2gWR0CFrTQl8gIQdX2UKGgGaAloD0MI9wKzQpEsT0CUhpRSlGgVS75oFkdAhbOVbqyGBXV9lChoBmgJaA9DCE/N5QZDk0hAlIaUUpRoFU3oA2gWR0CFuV7JGOMmdX2UKGgGaAloD0MIV3bB4JqTZECUhpRSlGgVTegDaBZHQIXDiOktVaR1fZQoaAZoCWgPQwjgRzXs9+5jQJSGlFKUaBVN6ANoFkdAhceyhakhzXV9lChoBmgJaA9DCGOYE7TJ41xAlIaUUpRoFU3oA2gWR0CFycCL/CIldX2UKGgGaAloD0MILdDukOITYkCUhpRSlGgVTegDaBZHQIXQFgnc+JR1fZQoaAZoCWgPQwg74/vi0slnQJSGlFKUaBVN6ANoFkdAhdOqAz544nV9lChoBmgJaA9DCAQg7upVTWJAlIaUUpRoFU3oA2gWR0CF1+AVfu1GdX2UKGgGaAloD0MIfZdSlwxoZECUhpRSlGgVTegDaBZHQIXY1du5z5p1fZQoaAZoCWgPQwgPYJFfPx9mQJSGlFKUaBVN6ANoFkdAhdx/9P1tf3V9lChoBmgJaA9DCI3PZP88ATFAlIaUUpRoFUuwaBZHQIXjmdVea8Z1fZQoaAZoCWgPQwhtcCL6tW9iQJSGlFKUaBVN6ANoFkdAhelXmV7hN3V9lChoBmgJaA9DCP8DrFW7FWFAlIaUUpRoFU3oA2gWR0CGCCJAMUh3dX2UKGgGaAloD0MIx/SEJR6NYUCUhpRSlGgVTegDaBZHQIYKoi9qUNd1fZQoaAZoCWgPQwi5ADRKl1ZjQJSGlFKUaBVN6ANoFkdAhjPDps41g3V9lChoBmgJaA9DCBiV1AlolVVAlIaUUpRoFU3oA2gWR0CGNGOuq3mWdX2UKGgGaAloD0MIhV5/Ep+oVUCUhpRSlGgVS6loFkdAhkljgQ6IWXV9lChoBmgJaA9DCJcbDHXYwmRAlIaUUpRoFU3oA2gWR0CGUFRdhRZVdX2UKGgGaAloD0MI1bDfE2v8YECUhpRSlGgVTegDaBZHQIZXR9PUKAt1fZQoaAZoCWgPQwjhfyvZsQliQJSGlFKUaBVN6ANoFkdAhlz4BFNL13V9lChoBmgJaA9DCKt3uB0aqWBAlIaUUpRoFU3oA2gWR0CGZsthd+ocdX2UKGgGaAloD0MI2gJC62EIZUCUhpRSlGgVTegDaBZHQIZqq+N96Tp1fZQoaAZoCWgPQwgD7KNTVwlgQJSGlFKUaBVN6ANoFkdAhmyGvGIbfnV9lChoBmgJaA9DCKX3ja+9nmdAlIaUUpRoFU3oA2gWR0CGdYw8nuzAdX2UKGgGaAloD0MIgZICC2D4Y0CUhpRSlGgVTegDaBZHQIZ5qHM2WIJ1fZQoaAZoCWgPQwiBBMWPMaNhQJSGlFKUaBVN6ANoFkdAhnqpQk5ZKXV9lChoBmgJaA9DCAuallgZlVxAlIaUUpRoFU3oA2gWR0CGfmQV9F4LdX2UKGgGaAloD0MINnLdlPKgU0CUhpRSlGgVS6hoFkdAhn8Zc1O0s3V9lChoBmgJaA9DCBAiGXJsGFRAlIaUUpRoFU3oA2gWR0CGhSWeHzpYdX2UKGgGaAloD0MIpbvrbMgtY0CUhpRSlGgVTegDaBZHQIaKFUXHim51fZQoaAZoCWgPQwiLM4Y5wV1iQJSGlFKUaBVN6ANoFkdAhqRPvBrN4nV9lChoBmgJaA9DCNB8zt0uVWNAlIaUUpRoFU3oA2gWR0CGplFz+3pfdX2UKGgGaAloD0MIxJeJIqQ6X0CUhpRSlGgVTegDaBZHQIaqSmKqGUR1fZQoaAZoCWgPQwgTmiSWlIhdQJSGlFKUaBVN6ANoFkdAhuIOLR8c/HV9lChoBmgJaA9DCOzAOSNKd2NAlIaUUpRoFU3oA2gWR0CG6B1dPci4dX2UKGgGaAloD0MIr0Sg+ocvYkCUhpRSlGgVTegDaBZHQIbuYFHJ9y91fZQoaAZoCWgPQwj59q5B3xNjQJSGlFKUaBVN6ANoFkdAhvOyauwHJXV9lChoBmgJaA9DCEF/oUeM7GNAlIaUUpRoFU3oA2gWR0CG/Ni5NGmUdX2UKGgGaAloD0MIiiDOwwm7X0CUhpRSlGgVTegDaBZHQIcAhFI/Z/V1fZQoaAZoCWgPQwhdb5upEJNeQJSGlFKUaBVN6ANoFkdAhww/mT1TSHV9lChoBmgJaA9DCGhBKO/jMWNAlIaUUpRoFU3oA2gWR0CHEIvjfek6dX2UKGgGaAloD0MIEXAIVepbYkCUhpRSlGgVTegDaBZHQIcRnwI+nqF1fZQoaAZoCWgPQwgYfJqTl7NlQJSGlFKUaBVN6ANoFkdAhxXpGOMl1XV9lChoBmgJaA9DCLpoyHiUVmJAlIaUUpRoFU3oA2gWR0CHFq+N96TodX2UKGgGaAloD0MIgzC3e7mwXECUhpRSlGgVTegDaBZHQIcdVkMCtA91fZQoaAZoCWgPQwj1oKAUrWhiQJSGlFKUaBVN6ANoFkdAhyM2USqU/3V9lChoBmgJaA9DCMjsLHqnzV5AlIaUUpRoFU3oA2gWR0CHQOZNwiqydX2UKGgGaAloD0MI+yDLgomDYECUhpRSlGgVTegDaBZHQIdDUCgbp/x1fZQoaAZoCWgPQwj0v1yLFp9ZQJSGlFKUaBVN6ANoFkdAh0gKcmShanVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed219d229981ba23fd707fdca2668c7d9d94d46153ce62a79f86b16642fcb03d
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee92224249cdd4862ee011a194ad44a334dc147db3dcb39482f892370cafd700
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48f87e26d036133fb28b2bd0f337021a5056b1e17ca7001ceeb75ba29d925780
|
3 |
+
size 240248
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 236.96925392482157, "std_reward": 22.139817761123236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T18:13:24.017116"}
|