twadada commited on
Commit
70b571a
·
verified ·
1 Parent(s): 2e31ada

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2599 -0
README.md ADDED
@@ -0,0 +1,2599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: gte-base-en-v1.5_embs_nofiltering_sortlenTrue_phrase2sent_15epoch_15epoch__adam0.001_accum1_best_epoch_3863037_bs128_result
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: None
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 72.71641791044777
18
+ - type: ap
19
+ value: 35.599140186230734
20
+ - type: f1
21
+ value: 66.72372354326045
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: None
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 72.7823
33
+ - type: ap
34
+ value: 66.88980427652794
35
+ - type: f1
36
+ value: 72.60105018624591
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: None
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 38.483999999999995
48
+ - type: f1
49
+ value: 37.867826932045745
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: None
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 21.195
61
+ - type: map_at_10
62
+ value: 35.876999999999995
63
+ - type: map_at_100
64
+ value: 37.147999999999996
65
+ - type: map_at_1000
66
+ value: 37.165
67
+ - type: map_at_3
68
+ value: 31.342
69
+ - type: map_at_5
70
+ value: 33.764
71
+ - type: mrr_at_1
72
+ value: 21.906
73
+ - type: mrr_at_10
74
+ value: 36.128
75
+ - type: mrr_at_100
76
+ value: 37.397999999999996
77
+ - type: mrr_at_1000
78
+ value: 37.416
79
+ - type: mrr_at_3
80
+ value: 31.555
81
+ - type: mrr_at_5
82
+ value: 34.001999999999995
83
+ - type: ndcg_at_1
84
+ value: 21.195
85
+ - type: ndcg_at_10
86
+ value: 44.207
87
+ - type: ndcg_at_100
88
+ value: 49.88
89
+ - type: ndcg_at_1000
90
+ value: 50.298
91
+ - type: ndcg_at_3
92
+ value: 34.755
93
+ - type: ndcg_at_5
94
+ value: 39.135
95
+ - type: precision_at_1
96
+ value: 21.195
97
+ - type: precision_at_10
98
+ value: 7.091
99
+ - type: precision_at_100
100
+ value: 0.963
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 14.889
105
+ - type: precision_at_5
106
+ value: 11.067
107
+ - type: recall_at_1
108
+ value: 21.195
109
+ - type: recall_at_10
110
+ value: 70.91
111
+ - type: recall_at_100
112
+ value: 96.30199999999999
113
+ - type: recall_at_1000
114
+ value: 99.502
115
+ - type: recall_at_3
116
+ value: 44.666
117
+ - type: recall_at_5
118
+ value: 55.334
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: None
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 38.289190023047105
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: None
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 28.15017802770073
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: None
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 54.677327183831046
152
+ - type: mrr
153
+ value: 68.2003253748406
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: None
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 81.79485923763309
165
+ - type: cos_sim_spearman
166
+ value: 79.71265968052003
167
+ - type: euclidean_pearson
168
+ value: 80.78575386279923
169
+ - type: euclidean_spearman
170
+ value: 79.71265968052003
171
+ - type: manhattan_pearson
172
+ value: 81.12300703450198
173
+ - type: manhattan_spearman
174
+ value: 81.23377867759768
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: None
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 75.04870129870129
186
+ - type: f1
187
+ value: 74.29090714638184
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: None
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 34.18202629628483
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: None
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 25.419352316577875
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: None
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 20.305
221
+ - type: map_at_10
222
+ value: 28.046
223
+ - type: map_at_100
224
+ value: 29.174
225
+ - type: map_at_1000
226
+ value: 29.326999999999998
227
+ - type: map_at_3
228
+ value: 25.464
229
+ - type: map_at_5
230
+ value: 26.874
231
+ - type: mrr_at_1
232
+ value: 26.179999999999996
233
+ - type: mrr_at_10
234
+ value: 34.0
235
+ - type: mrr_at_100
236
+ value: 34.797
237
+ - type: mrr_at_1000
238
+ value: 34.864
239
+ - type: mrr_at_3
240
+ value: 31.784000000000002
241
+ - type: mrr_at_5
242
+ value: 32.992
243
+ - type: ndcg_at_1
244
+ value: 26.179999999999996
245
+ - type: ndcg_at_10
246
+ value: 33.46
247
+ - type: ndcg_at_100
248
+ value: 38.539
249
+ - type: ndcg_at_1000
250
+ value: 41.619
251
+ - type: ndcg_at_3
252
+ value: 29.471000000000004
253
+ - type: ndcg_at_5
254
+ value: 31.169999999999998
255
+ - type: precision_at_1
256
+ value: 26.179999999999996
257
+ - type: precision_at_10
258
+ value: 6.680999999999999
259
+ - type: precision_at_100
260
+ value: 1.15
261
+ - type: precision_at_1000
262
+ value: 0.173
263
+ - type: precision_at_3
264
+ value: 14.591999999999999
265
+ - type: precision_at_5
266
+ value: 10.73
267
+ - type: recall_at_1
268
+ value: 20.305
269
+ - type: recall_at_10
270
+ value: 43.199
271
+ - type: recall_at_100
272
+ value: 66.46
273
+ - type: recall_at_1000
274
+ value: 87.469
275
+ - type: recall_at_3
276
+ value: 30.94
277
+ - type: recall_at_5
278
+ value: 35.927
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: None
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 18.265
290
+ - type: map_at_10
291
+ value: 24.661
292
+ - type: map_at_100
293
+ value: 25.739
294
+ - type: map_at_1000
295
+ value: 25.86
296
+ - type: map_at_3
297
+ value: 22.775000000000002
298
+ - type: map_at_5
299
+ value: 23.814
300
+ - type: mrr_at_1
301
+ value: 23.185
302
+ - type: mrr_at_10
303
+ value: 29.067
304
+ - type: mrr_at_100
305
+ value: 29.939
306
+ - type: mrr_at_1000
307
+ value: 30.007
308
+ - type: mrr_at_3
309
+ value: 27.197
310
+ - type: mrr_at_5
311
+ value: 28.248
312
+ - type: ndcg_at_1
313
+ value: 23.185
314
+ - type: ndcg_at_10
315
+ value: 28.638
316
+ - type: ndcg_at_100
317
+ value: 33.341
318
+ - type: ndcg_at_1000
319
+ value: 36.11
320
+ - type: ndcg_at_3
321
+ value: 25.599
322
+ - type: ndcg_at_5
323
+ value: 26.901999999999997
324
+ - type: precision_at_1
325
+ value: 23.185
326
+ - type: precision_at_10
327
+ value: 5.306
328
+ - type: precision_at_100
329
+ value: 0.959
330
+ - type: precision_at_1000
331
+ value: 0.145
332
+ - type: precision_at_3
333
+ value: 12.442
334
+ - type: precision_at_5
335
+ value: 8.764
336
+ - type: recall_at_1
337
+ value: 18.265
338
+ - type: recall_at_10
339
+ value: 36.055
340
+ - type: recall_at_100
341
+ value: 56.419
342
+ - type: recall_at_1000
343
+ value: 75.25500000000001
344
+ - type: recall_at_3
345
+ value: 26.906999999999996
346
+ - type: recall_at_5
347
+ value: 30.637999999999998
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: None
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 27.065
359
+ - type: map_at_10
360
+ value: 35.952
361
+ - type: map_at_100
362
+ value: 37.092999999999996
363
+ - type: map_at_1000
364
+ value: 37.19
365
+ - type: map_at_3
366
+ value: 33.410000000000004
367
+ - type: map_at_5
368
+ value: 34.743
369
+ - type: mrr_at_1
370
+ value: 31.223
371
+ - type: mrr_at_10
372
+ value: 39.174
373
+ - type: mrr_at_100
374
+ value: 40.091
375
+ - type: mrr_at_1000
376
+ value: 40.152
377
+ - type: mrr_at_3
378
+ value: 37.011
379
+ - type: mrr_at_5
380
+ value: 38.115
381
+ - type: ndcg_at_1
382
+ value: 31.223
383
+ - type: ndcg_at_10
384
+ value: 40.871
385
+ - type: ndcg_at_100
386
+ value: 46.068
387
+ - type: ndcg_at_1000
388
+ value: 48.295
389
+ - type: ndcg_at_3
390
+ value: 36.285000000000004
391
+ - type: ndcg_at_5
392
+ value: 38.25
393
+ - type: precision_at_1
394
+ value: 31.223
395
+ - type: precision_at_10
396
+ value: 6.639
397
+ - type: precision_at_100
398
+ value: 1.014
399
+ - type: precision_at_1000
400
+ value: 0.128
401
+ - type: precision_at_3
402
+ value: 16.092000000000002
403
+ - type: precision_at_5
404
+ value: 11.047
405
+ - type: recall_at_1
406
+ value: 27.065
407
+ - type: recall_at_10
408
+ value: 52.605000000000004
409
+ - type: recall_at_100
410
+ value: 75.653
411
+ - type: recall_at_1000
412
+ value: 91.724
413
+ - type: recall_at_3
414
+ value: 40.150999999999996
415
+ - type: recall_at_5
416
+ value: 44.979
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: None
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 12.692999999999998
428
+ - type: map_at_10
429
+ value: 17.427
430
+ - type: map_at_100
431
+ value: 18.235
432
+ - type: map_at_1000
433
+ value: 18.355
434
+ - type: map_at_3
435
+ value: 16.144
436
+ - type: map_at_5
437
+ value: 16.81
438
+ - type: mrr_at_1
439
+ value: 13.672
440
+ - type: mrr_at_10
441
+ value: 18.633
442
+ - type: mrr_at_100
443
+ value: 19.447
444
+ - type: mrr_at_1000
445
+ value: 19.554
446
+ - type: mrr_at_3
447
+ value: 17.401
448
+ - type: mrr_at_5
449
+ value: 17.983
450
+ - type: ndcg_at_1
451
+ value: 13.672
452
+ - type: ndcg_at_10
453
+ value: 20.212
454
+ - type: ndcg_at_100
455
+ value: 24.66
456
+ - type: ndcg_at_1000
457
+ value: 28.265
458
+ - type: ndcg_at_3
459
+ value: 17.625
460
+ - type: ndcg_at_5
461
+ value: 18.728
462
+ - type: precision_at_1
463
+ value: 13.672
464
+ - type: precision_at_10
465
+ value: 3.141
466
+ - type: precision_at_100
467
+ value: 0.569
468
+ - type: precision_at_1000
469
+ value: 0.093
470
+ - type: precision_at_3
471
+ value: 7.5329999999999995
472
+ - type: precision_at_5
473
+ value: 5.220000000000001
474
+ - type: recall_at_1
475
+ value: 12.692999999999998
476
+ - type: recall_at_10
477
+ value: 27.656
478
+ - type: recall_at_100
479
+ value: 48.927
480
+ - type: recall_at_1000
481
+ value: 77.113
482
+ - type: recall_at_3
483
+ value: 20.54
484
+ - type: recall_at_5
485
+ value: 23.177
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: None
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 7.814
497
+ - type: map_at_10
498
+ value: 11.472
499
+ - type: map_at_100
500
+ value: 12.283
501
+ - type: map_at_1000
502
+ value: 12.407
503
+ - type: map_at_3
504
+ value: 9.892
505
+ - type: map_at_5
506
+ value: 10.525
507
+ - type: mrr_at_1
508
+ value: 9.950000000000001
509
+ - type: mrr_at_10
510
+ value: 13.947999999999999
511
+ - type: mrr_at_100
512
+ value: 14.790000000000001
513
+ - type: mrr_at_1000
514
+ value: 14.893999999999998
515
+ - type: mrr_at_3
516
+ value: 12.189
517
+ - type: mrr_at_5
518
+ value: 12.91
519
+ - type: ndcg_at_1
520
+ value: 9.950000000000001
521
+ - type: ndcg_at_10
522
+ value: 14.481
523
+ - type: ndcg_at_100
524
+ value: 18.999
525
+ - type: ndcg_at_1000
526
+ value: 22.519
527
+ - type: ndcg_at_3
528
+ value: 11.212
529
+ - type: ndcg_at_5
530
+ value: 12.238
531
+ - type: precision_at_1
532
+ value: 9.950000000000001
533
+ - type: precision_at_10
534
+ value: 2.861
535
+ - type: precision_at_100
536
+ value: 0.607
537
+ - type: precision_at_1000
538
+ value: 0.104
539
+ - type: precision_at_3
540
+ value: 5.224
541
+ - type: precision_at_5
542
+ value: 3.856
543
+ - type: recall_at_1
544
+ value: 7.814
545
+ - type: recall_at_10
546
+ value: 21.507
547
+ - type: recall_at_100
548
+ value: 42.067
549
+ - type: recall_at_1000
550
+ value: 68.059
551
+ - type: recall_at_3
552
+ value: 12.489
553
+ - type: recall_at_5
554
+ value: 14.973
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: None
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 18.572
566
+ - type: map_at_10
567
+ value: 24.854000000000003
568
+ - type: map_at_100
569
+ value: 26.029000000000003
570
+ - type: map_at_1000
571
+ value: 26.177
572
+ - type: map_at_3
573
+ value: 22.417
574
+ - type: map_at_5
575
+ value: 23.612
576
+ - type: mrr_at_1
577
+ value: 22.907
578
+ - type: mrr_at_10
579
+ value: 29.643000000000004
580
+ - type: mrr_at_100
581
+ value: 30.499
582
+ - type: mrr_at_1000
583
+ value: 30.586999999999996
584
+ - type: mrr_at_3
585
+ value: 27.108999999999998
586
+ - type: mrr_at_5
587
+ value: 28.355999999999998
588
+ - type: ndcg_at_1
589
+ value: 22.907
590
+ - type: ndcg_at_10
591
+ value: 29.601
592
+ - type: ndcg_at_100
593
+ value: 35.11
594
+ - type: ndcg_at_1000
595
+ value: 38.433
596
+ - type: ndcg_at_3
597
+ value: 25.068
598
+ - type: ndcg_at_5
599
+ value: 26.828000000000003
600
+ - type: precision_at_1
601
+ value: 22.907
602
+ - type: precision_at_10
603
+ value: 5.525
604
+ - type: precision_at_100
605
+ value: 1.002
606
+ - type: precision_at_1000
607
+ value: 0.149
608
+ - type: precision_at_3
609
+ value: 11.389000000000001
610
+ - type: precision_at_5
611
+ value: 8.354000000000001
612
+ - type: recall_at_1
613
+ value: 18.572
614
+ - type: recall_at_10
615
+ value: 39.499
616
+ - type: recall_at_100
617
+ value: 63.46000000000001
618
+ - type: recall_at_1000
619
+ value: 86.52499999999999
620
+ - type: recall_at_3
621
+ value: 26.699
622
+ - type: recall_at_5
623
+ value: 31.175000000000004
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: None
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 14.918000000000001
635
+ - type: map_at_10
636
+ value: 20.223
637
+ - type: map_at_100
638
+ value: 21.429000000000002
639
+ - type: map_at_1000
640
+ value: 21.578
641
+ - type: map_at_3
642
+ value: 18.278
643
+ - type: map_at_5
644
+ value: 19.312
645
+ - type: mrr_at_1
646
+ value: 18.037
647
+ - type: mrr_at_10
648
+ value: 23.75
649
+ - type: mrr_at_100
650
+ value: 24.804000000000002
651
+ - type: mrr_at_1000
652
+ value: 24.898
653
+ - type: mrr_at_3
654
+ value: 21.842
655
+ - type: mrr_at_5
656
+ value: 22.755
657
+ - type: ndcg_at_1
658
+ value: 18.037
659
+ - type: ndcg_at_10
660
+ value: 23.907
661
+ - type: ndcg_at_100
662
+ value: 29.663
663
+ - type: ndcg_at_1000
664
+ value: 33.245000000000005
665
+ - type: ndcg_at_3
666
+ value: 20.379
667
+ - type: ndcg_at_5
668
+ value: 21.799
669
+ - type: precision_at_1
670
+ value: 18.037
671
+ - type: precision_at_10
672
+ value: 4.452
673
+ - type: precision_at_100
674
+ value: 0.881
675
+ - type: precision_at_1000
676
+ value: 0.13799999999999998
677
+ - type: precision_at_3
678
+ value: 9.513
679
+ - type: precision_at_5
680
+ value: 6.895
681
+ - type: recall_at_1
682
+ value: 14.918000000000001
683
+ - type: recall_at_10
684
+ value: 31.503999999999998
685
+ - type: recall_at_100
686
+ value: 56.354000000000006
687
+ - type: recall_at_1000
688
+ value: 81.774
689
+ - type: recall_at_3
690
+ value: 21.819
691
+ - type: recall_at_5
692
+ value: 25.459
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: mteb/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 14.668083333333332
704
+ - type: map_at_10
705
+ value: 20.24666666666667
706
+ - type: map_at_100
707
+ value: 21.21025
708
+ - type: map_at_1000
709
+ value: 21.340666666666664
710
+ - type: map_at_3
711
+ value: 18.417083333333334
712
+ - type: map_at_5
713
+ value: 19.366833333333332
714
+ - type: mrr_at_1
715
+ value: 17.777833333333334
716
+ - type: mrr_at_10
717
+ value: 23.403333333333336
718
+ - type: mrr_at_100
719
+ value: 24.25408333333333
720
+ - type: mrr_at_1000
721
+ value: 24.34333333333333
722
+ - type: mrr_at_3
723
+ value: 21.6155
724
+ - type: mrr_at_5
725
+ value: 22.521
726
+ - type: ndcg_at_1
727
+ value: 17.777833333333334
728
+ - type: ndcg_at_10
729
+ value: 23.933500000000002
730
+ - type: ndcg_at_100
731
+ value: 28.714749999999995
732
+ - type: ndcg_at_1000
733
+ value: 31.968833333333336
734
+ - type: ndcg_at_3
735
+ value: 20.60758333333333
736
+ - type: ndcg_at_5
737
+ value: 21.982416666666666
738
+ - type: precision_at_1
739
+ value: 17.777833333333334
740
+ - type: precision_at_10
741
+ value: 4.3180000000000005
742
+ - type: precision_at_100
743
+ value: 0.8045833333333333
744
+ - type: precision_at_1000
745
+ value: 0.12691666666666668
746
+ - type: precision_at_3
747
+ value: 9.535000000000002
748
+ - type: precision_at_5
749
+ value: 6.825916666666666
750
+ - type: recall_at_1
751
+ value: 14.668083333333332
752
+ - type: recall_at_10
753
+ value: 31.930916666666665
754
+ - type: recall_at_100
755
+ value: 53.753249999999994
756
+ - type: recall_at_1000
757
+ value: 77.43366666666667
758
+ - type: recall_at_3
759
+ value: 22.524250000000002
760
+ - type: recall_at_5
761
+ value: 26.094916666666666
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: None
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 10.096
773
+ - type: map_at_10
774
+ value: 15.190999999999999
775
+ - type: map_at_100
776
+ value: 15.922
777
+ - type: map_at_1000
778
+ value: 16.017
779
+ - type: map_at_3
780
+ value: 13.664000000000001
781
+ - type: map_at_5
782
+ value: 14.446
783
+ - type: mrr_at_1
784
+ value: 12.117
785
+ - type: mrr_at_10
786
+ value: 17.294
787
+ - type: mrr_at_100
788
+ value: 18.074
789
+ - type: mrr_at_1000
790
+ value: 18.153
791
+ - type: mrr_at_3
792
+ value: 15.823
793
+ - type: mrr_at_5
794
+ value: 16.59
795
+ - type: ndcg_at_1
796
+ value: 12.117
797
+ - type: ndcg_at_10
798
+ value: 18.248
799
+ - type: ndcg_at_100
800
+ value: 22.418
801
+ - type: ndcg_at_1000
802
+ value: 25.271
803
+ - type: ndcg_at_3
804
+ value: 15.368
805
+ - type: ndcg_at_5
806
+ value: 16.614
807
+ - type: precision_at_1
808
+ value: 12.117
809
+ - type: precision_at_10
810
+ value: 3.206
811
+ - type: precision_at_100
812
+ value: 0.583
813
+ - type: precision_at_1000
814
+ value: 0.09
815
+ - type: precision_at_3
816
+ value: 7.106
817
+ - type: precision_at_5
818
+ value: 5.061
819
+ - type: recall_at_1
820
+ value: 10.096
821
+ - type: recall_at_10
822
+ value: 25.624000000000002
823
+ - type: recall_at_100
824
+ value: 45.49
825
+ - type: recall_at_1000
826
+ value: 67.392
827
+ - type: recall_at_3
828
+ value: 17.68
829
+ - type: recall_at_5
830
+ value: 20.823
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: None
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: 46989137a86843e03a6195de44b09deda022eec7
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 7.7780000000000005
842
+ - type: map_at_10
843
+ value: 11.493
844
+ - type: map_at_100
845
+ value: 12.200999999999999
846
+ - type: map_at_1000
847
+ value: 12.324
848
+ - type: map_at_3
849
+ value: 10.244
850
+ - type: map_at_5
851
+ value: 10.899000000000001
852
+ - type: mrr_at_1
853
+ value: 9.876
854
+ - type: mrr_at_10
855
+ value: 14.001
856
+ - type: mrr_at_100
857
+ value: 14.701
858
+ - type: mrr_at_1000
859
+ value: 14.799999999999999
860
+ - type: mrr_at_3
861
+ value: 12.583
862
+ - type: mrr_at_5
863
+ value: 13.325000000000001
864
+ - type: ndcg_at_1
865
+ value: 9.876
866
+ - type: ndcg_at_10
867
+ value: 14.158000000000001
868
+ - type: ndcg_at_100
869
+ value: 18.038999999999998
870
+ - type: ndcg_at_1000
871
+ value: 21.58
872
+ - type: ndcg_at_3
873
+ value: 11.722000000000001
874
+ - type: ndcg_at_5
875
+ value: 12.769
876
+ - type: precision_at_1
877
+ value: 9.876
878
+ - type: precision_at_10
879
+ value: 2.705
880
+ - type: precision_at_100
881
+ value: 0.555
882
+ - type: precision_at_1000
883
+ value: 0.10300000000000001
884
+ - type: precision_at_3
885
+ value: 5.666
886
+ - type: precision_at_5
887
+ value: 4.178
888
+ - type: recall_at_1
889
+ value: 7.7780000000000005
890
+ - type: recall_at_10
891
+ value: 19.86
892
+ - type: recall_at_100
893
+ value: 38.0
894
+ - type: recall_at_1000
895
+ value: 64.331
896
+ - type: recall_at_3
897
+ value: 13.117999999999999
898
+ - type: recall_at_5
899
+ value: 15.783
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: None
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 13.088
911
+ - type: map_at_10
912
+ value: 17.759
913
+ - type: map_at_100
914
+ value: 18.597
915
+ - type: map_at_1000
916
+ value: 18.718
917
+ - type: map_at_3
918
+ value: 16.232
919
+ - type: map_at_5
920
+ value: 17.129
921
+ - type: mrr_at_1
922
+ value: 15.672
923
+ - type: mrr_at_10
924
+ value: 20.676
925
+ - type: mrr_at_100
926
+ value: 21.505
927
+ - type: mrr_at_1000
928
+ value: 21.605
929
+ - type: mrr_at_3
930
+ value: 18.999
931
+ - type: mrr_at_5
932
+ value: 19.932
933
+ - type: ndcg_at_1
934
+ value: 15.672
935
+ - type: ndcg_at_10
936
+ value: 21.035
937
+ - type: ndcg_at_100
938
+ value: 25.52
939
+ - type: ndcg_at_1000
940
+ value: 28.875
941
+ - type: ndcg_at_3
942
+ value: 18.015
943
+ - type: ndcg_at_5
944
+ value: 19.476
945
+ - type: precision_at_1
946
+ value: 15.672
947
+ - type: precision_at_10
948
+ value: 3.535
949
+ - type: precision_at_100
950
+ value: 0.652
951
+ - type: precision_at_1000
952
+ value: 0.106
953
+ - type: precision_at_3
954
+ value: 8.24
955
+ - type: precision_at_5
956
+ value: 5.821
957
+ - type: recall_at_1
958
+ value: 13.088
959
+ - type: recall_at_10
960
+ value: 28.414
961
+ - type: recall_at_100
962
+ value: 48.949999999999996
963
+ - type: recall_at_1000
964
+ value: 73.67399999999999
965
+ - type: recall_at_3
966
+ value: 19.893
967
+ - type: recall_at_5
968
+ value: 23.718
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: None
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 13.433
980
+ - type: map_at_10
981
+ value: 19.926
982
+ - type: map_at_100
983
+ value: 21.11
984
+ - type: map_at_1000
985
+ value: 21.302
986
+ - type: map_at_3
987
+ value: 17.991
988
+ - type: map_at_5
989
+ value: 19.078999999999997
990
+ - type: mrr_at_1
991
+ value: 17.391000000000002
992
+ - type: mrr_at_10
993
+ value: 23.433999999999997
994
+ - type: mrr_at_100
995
+ value: 24.41
996
+ - type: mrr_at_1000
997
+ value: 24.501
998
+ - type: mrr_at_3
999
+ value: 21.706
1000
+ - type: mrr_at_5
1001
+ value: 22.684
1002
+ - type: ndcg_at_1
1003
+ value: 17.391000000000002
1004
+ - type: ndcg_at_10
1005
+ value: 24.11
1006
+ - type: ndcg_at_100
1007
+ value: 29.500999999999998
1008
+ - type: ndcg_at_1000
1009
+ value: 33.093
1010
+ - type: ndcg_at_3
1011
+ value: 21.037
1012
+ - type: ndcg_at_5
1013
+ value: 22.439
1014
+ - type: precision_at_1
1015
+ value: 17.391000000000002
1016
+ - type: precision_at_10
1017
+ value: 4.881
1018
+ - type: precision_at_100
1019
+ value: 1.138
1020
+ - type: precision_at_1000
1021
+ value: 0.2
1022
+ - type: precision_at_3
1023
+ value: 10.277
1024
+ - type: precision_at_5
1025
+ value: 7.549
1026
+ - type: recall_at_1
1027
+ value: 13.433
1028
+ - type: recall_at_10
1029
+ value: 32.029
1030
+ - type: recall_at_100
1031
+ value: 57.727
1032
+ - type: recall_at_1000
1033
+ value: 82.536
1034
+ - type: recall_at_3
1035
+ value: 22.914
1036
+ - type: recall_at_5
1037
+ value: 26.844
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: None
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 11.99
1049
+ - type: map_at_10
1050
+ value: 15.956000000000001
1051
+ - type: map_at_100
1052
+ value: 16.711000000000002
1053
+ - type: map_at_1000
1054
+ value: 16.833000000000002
1055
+ - type: map_at_3
1056
+ value: 14.494000000000002
1057
+ - type: map_at_5
1058
+ value: 15.159
1059
+ - type: mrr_at_1
1060
+ value: 13.123999999999999
1061
+ - type: mrr_at_10
1062
+ value: 17.22
1063
+ - type: mrr_at_100
1064
+ value: 17.992
1065
+ - type: mrr_at_1000
1066
+ value: 18.105
1067
+ - type: mrr_at_3
1068
+ value: 15.742
1069
+ - type: mrr_at_5
1070
+ value: 16.362
1071
+ - type: ndcg_at_1
1072
+ value: 13.123999999999999
1073
+ - type: ndcg_at_10
1074
+ value: 18.481
1075
+ - type: ndcg_at_100
1076
+ value: 22.719
1077
+ - type: ndcg_at_1000
1078
+ value: 26.321
1079
+ - type: ndcg_at_3
1080
+ value: 15.509999999999998
1081
+ - type: ndcg_at_5
1082
+ value: 16.576
1083
+ - type: precision_at_1
1084
+ value: 13.123999999999999
1085
+ - type: precision_at_10
1086
+ value: 2.884
1087
+ - type: precision_at_100
1088
+ value: 0.545
1089
+ - type: precision_at_1000
1090
+ value: 0.094
1091
+ - type: precision_at_3
1092
+ value: 6.346
1093
+ - type: precision_at_5
1094
+ value: 4.436
1095
+ - type: recall_at_1
1096
+ value: 11.99
1097
+ - type: recall_at_10
1098
+ value: 25.219
1099
+ - type: recall_at_100
1100
+ value: 45.532000000000004
1101
+ - type: recall_at_1000
1102
+ value: 73.35199999999999
1103
+ - type: recall_at_3
1104
+ value: 17.141000000000002
1105
+ - type: recall_at_5
1106
+ value: 19.643
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: None
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 7.6240000000000006
1118
+ - type: map_at_10
1119
+ value: 13.211999999999998
1120
+ - type: map_at_100
1121
+ value: 14.82
1122
+ - type: map_at_1000
1123
+ value: 15.039
1124
+ - type: map_at_3
1125
+ value: 10.793999999999999
1126
+ - type: map_at_5
1127
+ value: 12.035
1128
+ - type: mrr_at_1
1129
+ value: 17.459
1130
+ - type: mrr_at_10
1131
+ value: 26.590000000000003
1132
+ - type: mrr_at_100
1133
+ value: 27.792
1134
+ - type: mrr_at_1000
1135
+ value: 27.851
1136
+ - type: mrr_at_3
1137
+ value: 23.268
1138
+ - type: mrr_at_5
1139
+ value: 25.192999999999998
1140
+ - type: ndcg_at_1
1141
+ value: 17.459
1142
+ - type: ndcg_at_10
1143
+ value: 19.606
1144
+ - type: ndcg_at_100
1145
+ value: 26.87
1146
+ - type: ndcg_at_1000
1147
+ value: 31.080000000000002
1148
+ - type: ndcg_at_3
1149
+ value: 15.190000000000001
1150
+ - type: ndcg_at_5
1151
+ value: 16.85
1152
+ - type: precision_at_1
1153
+ value: 17.459
1154
+ - type: precision_at_10
1155
+ value: 6.45
1156
+ - type: precision_at_100
1157
+ value: 1.421
1158
+ - type: precision_at_1000
1159
+ value: 0.219
1160
+ - type: precision_at_3
1161
+ value: 11.488
1162
+ - type: precision_at_5
1163
+ value: 9.316
1164
+ - type: recall_at_1
1165
+ value: 7.6240000000000006
1166
+ - type: recall_at_10
1167
+ value: 24.593
1168
+ - type: recall_at_100
1169
+ value: 50.300999999999995
1170
+ - type: recall_at_1000
1171
+ value: 74.439
1172
+ - type: recall_at_3
1173
+ value: 14.097000000000001
1174
+ - type: recall_at_5
1175
+ value: 18.362000000000002
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: None
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 4.456
1187
+ - type: map_at_10
1188
+ value: 9.995
1189
+ - type: map_at_100
1190
+ value: 14.196
1191
+ - type: map_at_1000
1192
+ value: 15.284
1193
+ - type: map_at_3
1194
+ value: 7.02
1195
+ - type: map_at_5
1196
+ value: 8.341
1197
+ - type: mrr_at_1
1198
+ value: 43.25
1199
+ - type: mrr_at_10
1200
+ value: 52.626
1201
+ - type: mrr_at_100
1202
+ value: 53.361000000000004
1203
+ - type: mrr_at_1000
1204
+ value: 53.396
1205
+ - type: mrr_at_3
1206
+ value: 50.208
1207
+ - type: mrr_at_5
1208
+ value: 51.696
1209
+ - type: ndcg_at_1
1210
+ value: 31.75
1211
+ - type: ndcg_at_10
1212
+ value: 24.557000000000002
1213
+ - type: ndcg_at_100
1214
+ value: 28.179
1215
+ - type: ndcg_at_1000
1216
+ value: 35.42
1217
+ - type: ndcg_at_3
1218
+ value: 27.05
1219
+ - type: ndcg_at_5
1220
+ value: 25.938
1221
+ - type: precision_at_1
1222
+ value: 43.25
1223
+ - type: precision_at_10
1224
+ value: 21.95
1225
+ - type: precision_at_100
1226
+ value: 7.21
1227
+ - type: precision_at_1000
1228
+ value: 1.5310000000000001
1229
+ - type: precision_at_3
1230
+ value: 32.25
1231
+ - type: precision_at_5
1232
+ value: 28.050000000000004
1233
+ - type: recall_at_1
1234
+ value: 4.456
1235
+ - type: recall_at_10
1236
+ value: 14.808
1237
+ - type: recall_at_100
1238
+ value: 35.062
1239
+ - type: recall_at_1000
1240
+ value: 60.111000000000004
1241
+ - type: recall_at_3
1242
+ value: 8.333
1243
+ - type: recall_at_5
1244
+ value: 10.847999999999999
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: None
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 48.275
1256
+ - type: f1
1257
+ value: 44.11697299626323
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: None
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 16.512
1269
+ - type: map_at_10
1270
+ value: 25.102000000000004
1271
+ - type: map_at_100
1272
+ value: 26.14
1273
+ - type: map_at_1000
1274
+ value: 26.212000000000003
1275
+ - type: map_at_3
1276
+ value: 22.531000000000002
1277
+ - type: map_at_5
1278
+ value: 23.959
1279
+ - type: mrr_at_1
1280
+ value: 17.642
1281
+ - type: mrr_at_10
1282
+ value: 26.665
1283
+ - type: mrr_at_100
1284
+ value: 27.700000000000003
1285
+ - type: mrr_at_1000
1286
+ value: 27.762999999999998
1287
+ - type: mrr_at_3
1288
+ value: 24.03
1289
+ - type: mrr_at_5
1290
+ value: 25.501
1291
+ - type: ndcg_at_1
1292
+ value: 17.642
1293
+ - type: ndcg_at_10
1294
+ value: 30.162
1295
+ - type: ndcg_at_100
1296
+ value: 35.393
1297
+ - type: ndcg_at_1000
1298
+ value: 37.370999999999995
1299
+ - type: ndcg_at_3
1300
+ value: 24.878
1301
+ - type: ndcg_at_5
1302
+ value: 27.426000000000002
1303
+ - type: precision_at_1
1304
+ value: 17.642
1305
+ - type: precision_at_10
1306
+ value: 4.845
1307
+ - type: precision_at_100
1308
+ value: 0.765
1309
+ - type: precision_at_1000
1310
+ value: 0.095
1311
+ - type: precision_at_3
1312
+ value: 10.876
1313
+ - type: precision_at_5
1314
+ value: 7.864
1315
+ - type: recall_at_1
1316
+ value: 16.512
1317
+ - type: recall_at_10
1318
+ value: 44.528
1319
+ - type: recall_at_100
1320
+ value: 68.794
1321
+ - type: recall_at_1000
1322
+ value: 84.055
1323
+ - type: recall_at_3
1324
+ value: 30.151
1325
+ - type: recall_at_5
1326
+ value: 36.244
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: None
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 6.548
1338
+ - type: map_at_10
1339
+ value: 11.365
1340
+ - type: map_at_100
1341
+ value: 12.659
1342
+ - type: map_at_1000
1343
+ value: 12.870999999999999
1344
+ - type: map_at_3
1345
+ value: 9.238
1346
+ - type: map_at_5
1347
+ value: 10.295
1348
+ - type: mrr_at_1
1349
+ value: 13.735
1350
+ - type: mrr_at_10
1351
+ value: 19.666
1352
+ - type: mrr_at_100
1353
+ value: 20.848
1354
+ - type: mrr_at_1000
1355
+ value: 20.951
1356
+ - type: mrr_at_3
1357
+ value: 17.335
1358
+ - type: mrr_at_5
1359
+ value: 18.616
1360
+ - type: ndcg_at_1
1361
+ value: 13.735
1362
+ - type: ndcg_at_10
1363
+ value: 15.923000000000002
1364
+ - type: ndcg_at_100
1365
+ value: 22.23
1366
+ - type: ndcg_at_1000
1367
+ value: 26.893
1368
+ - type: ndcg_at_3
1369
+ value: 12.756
1370
+ - type: ndcg_at_5
1371
+ value: 13.883999999999999
1372
+ - type: precision_at_1
1373
+ value: 13.735
1374
+ - type: precision_at_10
1375
+ value: 4.7379999999999995
1376
+ - type: precision_at_100
1377
+ value: 1.086
1378
+ - type: precision_at_1000
1379
+ value: 0.19
1380
+ - type: precision_at_3
1381
+ value: 8.436
1382
+ - type: precision_at_5
1383
+ value: 6.7589999999999995
1384
+ - type: recall_at_1
1385
+ value: 6.548
1386
+ - type: recall_at_10
1387
+ value: 21.267
1388
+ - type: recall_at_100
1389
+ value: 46.07
1390
+ - type: recall_at_1000
1391
+ value: 74.868
1392
+ - type: recall_at_3
1393
+ value: 11.611
1394
+ - type: recall_at_5
1395
+ value: 15.284
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: None
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 17.387
1407
+ - type: map_at_10
1408
+ value: 24.564
1409
+ - type: map_at_100
1410
+ value: 25.503999999999998
1411
+ - type: map_at_1000
1412
+ value: 25.619999999999997
1413
+ - type: map_at_3
1414
+ value: 22.496
1415
+ - type: map_at_5
1416
+ value: 23.646
1417
+ - type: mrr_at_1
1418
+ value: 34.774
1419
+ - type: mrr_at_10
1420
+ value: 41.935
1421
+ - type: mrr_at_100
1422
+ value: 42.679
1423
+ - type: mrr_at_1000
1424
+ value: 42.737
1425
+ - type: mrr_at_3
1426
+ value: 39.883
1427
+ - type: mrr_at_5
1428
+ value: 41.063
1429
+ - type: ndcg_at_1
1430
+ value: 34.774
1431
+ - type: ndcg_at_10
1432
+ value: 31.456
1433
+ - type: ndcg_at_100
1434
+ value: 35.827
1435
+ - type: ndcg_at_1000
1436
+ value: 38.627
1437
+ - type: ndcg_at_3
1438
+ value: 27.534999999999997
1439
+ - type: ndcg_at_5
1440
+ value: 29.452
1441
+ - type: precision_at_1
1442
+ value: 34.774
1443
+ - type: precision_at_10
1444
+ value: 6.97
1445
+ - type: precision_at_100
1446
+ value: 1.048
1447
+ - type: precision_at_1000
1448
+ value: 0.14200000000000002
1449
+ - type: precision_at_3
1450
+ value: 17.349
1451
+ - type: precision_at_5
1452
+ value: 11.924
1453
+ - type: recall_at_1
1454
+ value: 17.387
1455
+ - type: recall_at_10
1456
+ value: 34.848
1457
+ - type: recall_at_100
1458
+ value: 52.384
1459
+ - type: recall_at_1000
1460
+ value: 71.134
1461
+ - type: recall_at_3
1462
+ value: 26.023000000000003
1463
+ - type: recall_at_5
1464
+ value: 29.811
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: None
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 69.98119999999999
1476
+ - type: ap
1477
+ value: 64.17725086855937
1478
+ - type: f1
1479
+ value: 69.78928359055172
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: None
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 6.372999999999999
1491
+ - type: map_at_10
1492
+ value: 11.145
1493
+ - type: map_at_100
1494
+ value: 12.055
1495
+ - type: map_at_1000
1496
+ value: 12.17
1497
+ - type: map_at_3
1498
+ value: 9.391
1499
+ - type: map_at_5
1500
+ value: 10.270999999999999
1501
+ - type: mrr_at_1
1502
+ value: 6.561999999999999
1503
+ - type: mrr_at_10
1504
+ value: 11.446000000000002
1505
+ - type: mrr_at_100
1506
+ value: 12.359
1507
+ - type: mrr_at_1000
1508
+ value: 12.47
1509
+ - type: mrr_at_3
1510
+ value: 9.654
1511
+ - type: mrr_at_5
1512
+ value: 10.566
1513
+ - type: ndcg_at_1
1514
+ value: 6.5329999999999995
1515
+ - type: ndcg_at_10
1516
+ value: 14.174000000000001
1517
+ - type: ndcg_at_100
1518
+ value: 19.168
1519
+ - type: ndcg_at_1000
1520
+ value: 22.579
1521
+ - type: ndcg_at_3
1522
+ value: 10.465
1523
+ - type: ndcg_at_5
1524
+ value: 12.057
1525
+ - type: precision_at_1
1526
+ value: 6.5329999999999995
1527
+ - type: precision_at_10
1528
+ value: 2.451
1529
+ - type: precision_at_100
1530
+ value: 0.506
1531
+ - type: precision_at_1000
1532
+ value: 0.08
1533
+ - type: precision_at_3
1534
+ value: 4.58
1535
+ - type: precision_at_5
1536
+ value: 3.553
1537
+ - type: recall_at_1
1538
+ value: 6.372999999999999
1539
+ - type: recall_at_10
1540
+ value: 23.639
1541
+ - type: recall_at_100
1542
+ value: 48.012
1543
+ - type: recall_at_1000
1544
+ value: 75.368
1545
+ - type: recall_at_3
1546
+ value: 13.333
1547
+ - type: recall_at_5
1548
+ value: 17.147000000000002
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: None
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 91.3953488372093
1560
+ - type: f1
1561
+ value: 90.47618297254341
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: None
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 61.249430004559954
1573
+ - type: f1
1574
+ value: 42.242289025471344
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: None
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 65.15131136516476
1586
+ - type: f1
1587
+ value: 62.8508450491576
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: None
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 71.9670477471419
1599
+ - type: f1
1600
+ value: 70.83719077833712
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: None
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 31.27049656570754
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: None
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 27.8992311215977
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: None
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 31.216583547389536
1634
+ - type: mrr
1635
+ value: 32.31147129597184
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: None
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 4.651000000000001
1647
+ - type: map_at_10
1648
+ value: 8.924999999999999
1649
+ - type: map_at_100
1650
+ value: 11.43
1651
+ - type: map_at_1000
1652
+ value: 12.879999999999999
1653
+ - type: map_at_3
1654
+ value: 6.718
1655
+ - type: map_at_5
1656
+ value: 7.727
1657
+ - type: mrr_at_1
1658
+ value: 37.461
1659
+ - type: mrr_at_10
1660
+ value: 46.018
1661
+ - type: mrr_at_100
1662
+ value: 46.649
1663
+ - type: mrr_at_1000
1664
+ value: 46.713
1665
+ - type: mrr_at_3
1666
+ value: 43.55
1667
+ - type: mrr_at_5
1668
+ value: 44.928000000000004
1669
+ - type: ndcg_at_1
1670
+ value: 36.378
1671
+ - type: ndcg_at_10
1672
+ value: 27.193
1673
+ - type: ndcg_at_100
1674
+ value: 25.840000000000003
1675
+ - type: ndcg_at_1000
1676
+ value: 35.382999999999996
1677
+ - type: ndcg_at_3
1678
+ value: 31.054
1679
+ - type: ndcg_at_5
1680
+ value: 29.523
1681
+ - type: precision_at_1
1682
+ value: 37.461
1683
+ - type: precision_at_10
1684
+ value: 19.875999999999998
1685
+ - type: precision_at_100
1686
+ value: 7.198
1687
+ - type: precision_at_1000
1688
+ value: 2.069
1689
+ - type: precision_at_3
1690
+ value: 28.38
1691
+ - type: precision_at_5
1692
+ value: 25.386999999999997
1693
+ - type: recall_at_1
1694
+ value: 4.651000000000001
1695
+ - type: recall_at_10
1696
+ value: 13.517999999999999
1697
+ - type: recall_at_100
1698
+ value: 28.475
1699
+ - type: recall_at_1000
1700
+ value: 61.861999999999995
1701
+ - type: recall_at_3
1702
+ value: 7.657
1703
+ - type: recall_at_5
1704
+ value: 9.76
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: None
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 9.456000000000001
1716
+ - type: map_at_10
1717
+ value: 16.392
1718
+ - type: map_at_100
1719
+ value: 17.730999999999998
1720
+ - type: map_at_1000
1721
+ value: 17.835
1722
+ - type: map_at_3
1723
+ value: 13.743
1724
+ - type: map_at_5
1725
+ value: 15.262999999999998
1726
+ - type: mrr_at_1
1727
+ value: 10.776
1728
+ - type: mrr_at_10
1729
+ value: 18.163999999999998
1730
+ - type: mrr_at_100
1731
+ value: 19.403000000000002
1732
+ - type: mrr_at_1000
1733
+ value: 19.489
1734
+ - type: mrr_at_3
1735
+ value: 15.464
1736
+ - type: mrr_at_5
1737
+ value: 17.035
1738
+ - type: ndcg_at_1
1739
+ value: 10.776
1740
+ - type: ndcg_at_10
1741
+ value: 20.959
1742
+ - type: ndcg_at_100
1743
+ value: 27.589000000000002
1744
+ - type: ndcg_at_1000
1745
+ value: 30.416999999999998
1746
+ - type: ndcg_at_3
1747
+ value: 15.552
1748
+ - type: ndcg_at_5
1749
+ value: 18.275
1750
+ - type: precision_at_1
1751
+ value: 10.776
1752
+ - type: precision_at_10
1753
+ value: 3.94
1754
+ - type: precision_at_100
1755
+ value: 0.763
1756
+ - type: precision_at_1000
1757
+ value: 0.10300000000000001
1758
+ - type: precision_at_3
1759
+ value: 7.396999999999999
1760
+ - type: precision_at_5
1761
+ value: 5.933
1762
+ - type: recall_at_1
1763
+ value: 9.456000000000001
1764
+ - type: recall_at_10
1765
+ value: 33.394
1766
+ - type: recall_at_100
1767
+ value: 63.915
1768
+ - type: recall_at_1000
1769
+ value: 85.598
1770
+ - type: recall_at_3
1771
+ value: 19.098000000000003
1772
+ - type: recall_at_5
1773
+ value: 25.466
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: None
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 64.744
1785
+ - type: map_at_10
1786
+ value: 77.86
1787
+ - type: map_at_100
1788
+ value: 78.58800000000001
1789
+ - type: map_at_1000
1790
+ value: 78.617
1791
+ - type: map_at_3
1792
+ value: 74.788
1793
+ - type: map_at_5
1794
+ value: 76.716
1795
+ - type: mrr_at_1
1796
+ value: 74.49
1797
+ - type: mrr_at_10
1798
+ value: 81.843
1799
+ - type: mrr_at_100
1800
+ value: 82.035
1801
+ - type: mrr_at_1000
1802
+ value: 82.038
1803
+ - type: mrr_at_3
1804
+ value: 80.39
1805
+ - type: mrr_at_5
1806
+ value: 81.372
1807
+ - type: ndcg_at_1
1808
+ value: 74.59
1809
+ - type: ndcg_at_10
1810
+ value: 82.459
1811
+ - type: ndcg_at_100
1812
+ value: 84.34899999999999
1813
+ - type: ndcg_at_1000
1814
+ value: 84.626
1815
+ - type: ndcg_at_3
1816
+ value: 78.821
1817
+ - type: ndcg_at_5
1818
+ value: 80.83500000000001
1819
+ - type: precision_at_1
1820
+ value: 74.59
1821
+ - type: precision_at_10
1822
+ value: 12.494
1823
+ - type: precision_at_100
1824
+ value: 1.477
1825
+ - type: precision_at_1000
1826
+ value: 0.155
1827
+ - type: precision_at_3
1828
+ value: 34.233000000000004
1829
+ - type: precision_at_5
1830
+ value: 22.747999999999998
1831
+ - type: recall_at_1
1832
+ value: 64.744
1833
+ - type: recall_at_10
1834
+ value: 91.355
1835
+ - type: recall_at_100
1836
+ value: 98.30799999999999
1837
+ - type: recall_at_1000
1838
+ value: 99.766
1839
+ - type: recall_at_3
1840
+ value: 81.109
1841
+ - type: recall_at_5
1842
+ value: 86.572
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: None
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 46.254882422464526
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: None
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 50.94989318333412
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: None
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 2.868
1876
+ - type: map_at_10
1877
+ value: 7.155
1878
+ - type: map_at_100
1879
+ value: 8.651
1880
+ - type: map_at_1000
1881
+ value: 8.921
1882
+ - type: map_at_3
1883
+ value: 5.197
1884
+ - type: map_at_5
1885
+ value: 6.168
1886
+ - type: mrr_at_1
1887
+ value: 14.099999999999998
1888
+ - type: mrr_at_10
1889
+ value: 22.528000000000002
1890
+ - type: mrr_at_100
1891
+ value: 23.730999999999998
1892
+ - type: mrr_at_1000
1893
+ value: 23.827
1894
+ - type: mrr_at_3
1895
+ value: 19.683
1896
+ - type: mrr_at_5
1897
+ value: 21.233
1898
+ - type: ndcg_at_1
1899
+ value: 14.099999999999998
1900
+ - type: ndcg_at_10
1901
+ value: 12.756
1902
+ - type: ndcg_at_100
1903
+ value: 19.49
1904
+ - type: ndcg_at_1000
1905
+ value: 24.942
1906
+ - type: ndcg_at_3
1907
+ value: 11.905000000000001
1908
+ - type: ndcg_at_5
1909
+ value: 10.474
1910
+ - type: precision_at_1
1911
+ value: 14.099999999999998
1912
+ - type: precision_at_10
1913
+ value: 6.7299999999999995
1914
+ - type: precision_at_100
1915
+ value: 1.657
1916
+ - type: precision_at_1000
1917
+ value: 0.297
1918
+ - type: precision_at_3
1919
+ value: 11.200000000000001
1920
+ - type: precision_at_5
1921
+ value: 9.3
1922
+ - type: recall_at_1
1923
+ value: 2.868
1924
+ - type: recall_at_10
1925
+ value: 13.613
1926
+ - type: recall_at_100
1927
+ value: 33.645
1928
+ - type: recall_at_1000
1929
+ value: 60.372
1930
+ - type: recall_at_3
1931
+ value: 6.808
1932
+ - type: recall_at_5
1933
+ value: 9.418
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: None
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 77.98965504956827
1945
+ - type: cos_sim_spearman
1946
+ value: 68.28460263921258
1947
+ - type: euclidean_pearson
1948
+ value: 73.50270698016448
1949
+ - type: euclidean_spearman
1950
+ value: 68.28468403646217
1951
+ - type: manhattan_pearson
1952
+ value: 72.8261914195885
1953
+ - type: manhattan_spearman
1954
+ value: 67.86873546122553
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: None
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 77.14830947681742
1966
+ - type: cos_sim_spearman
1967
+ value: 68.60266030636393
1968
+ - type: euclidean_pearson
1969
+ value: 72.88451477994006
1970
+ - type: euclidean_spearman
1971
+ value: 68.60389167221209
1972
+ - type: manhattan_pearson
1973
+ value: 71.89880964464528
1974
+ - type: manhattan_spearman
1975
+ value: 68.11051648970675
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: None
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 78.72037928360238
1987
+ - type: cos_sim_spearman
1988
+ value: 79.74389537608737
1989
+ - type: euclidean_pearson
1990
+ value: 79.39980926218213
1991
+ - type: euclidean_spearman
1992
+ value: 79.74393317465844
1993
+ - type: manhattan_pearson
1994
+ value: 78.7481714360194
1995
+ - type: manhattan_spearman
1996
+ value: 79.05784658583435
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: None
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 79.20839429694983
2008
+ - type: cos_sim_spearman
2009
+ value: 75.75758249233702
2010
+ - type: euclidean_pearson
2011
+ value: 78.2593144118954
2012
+ - type: euclidean_spearman
2013
+ value: 75.7575727998599
2014
+ - type: manhattan_pearson
2015
+ value: 77.98797449902915
2016
+ - type: manhattan_spearman
2017
+ value: 75.58570762607603
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: None
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 82.38797626966284
2029
+ - type: cos_sim_spearman
2030
+ value: 83.0821006142509
2031
+ - type: euclidean_pearson
2032
+ value: 82.89995084283936
2033
+ - type: euclidean_spearman
2034
+ value: 83.08209908184749
2035
+ - type: manhattan_pearson
2036
+ value: 82.6019409098804
2037
+ - type: manhattan_spearman
2038
+ value: 82.76534947735776
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: None
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 77.80219740466768
2050
+ - type: cos_sim_spearman
2051
+ value: 79.07336247296158
2052
+ - type: euclidean_pearson
2053
+ value: 78.34175159212086
2054
+ - type: euclidean_spearman
2055
+ value: 79.07335507859334
2056
+ - type: manhattan_pearson
2057
+ value: 78.146156004842
2058
+ - type: manhattan_spearman
2059
+ value: 78.85783029933849
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: None
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 84.74773705987958
2071
+ - type: cos_sim_spearman
2072
+ value: 85.73402749289298
2073
+ - type: euclidean_pearson
2074
+ value: 85.18510280404286
2075
+ - type: euclidean_spearman
2076
+ value: 85.73490066116952
2077
+ - type: manhattan_pearson
2078
+ value: 84.93638596678905
2079
+ - type: manhattan_spearman
2080
+ value: 85.5315548466084
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: None
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 59.17015437324628
2092
+ - type: cos_sim_spearman
2093
+ value: 59.75467857816752
2094
+ - type: euclidean_pearson
2095
+ value: 60.812443155269534
2096
+ - type: euclidean_spearman
2097
+ value: 59.75467857816752
2098
+ - type: manhattan_pearson
2099
+ value: 59.950493146979255
2100
+ - type: manhattan_spearman
2101
+ value: 58.932105528273645
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: None
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 80.46948132600193
2113
+ - type: cos_sim_spearman
2114
+ value: 79.10069645170242
2115
+ - type: euclidean_pearson
2116
+ value: 80.31463403998292
2117
+ - type: euclidean_spearman
2118
+ value: 79.10071491600597
2119
+ - type: manhattan_pearson
2120
+ value: 80.01917165738134
2121
+ - type: manhattan_spearman
2122
+ value: 78.86150076844012
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: None
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 74.0368453616957
2134
+ - type: mrr
2135
+ value: 91.42105987694224
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: None
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 37.083
2147
+ - type: map_at_10
2148
+ value: 45.626
2149
+ - type: map_at_100
2150
+ value: 46.741
2151
+ - type: map_at_1000
2152
+ value: 46.796
2153
+ - type: map_at_3
2154
+ value: 43.397999999999996
2155
+ - type: map_at_5
2156
+ value: 44.098
2157
+ - type: mrr_at_1
2158
+ value: 39.333
2159
+ - type: mrr_at_10
2160
+ value: 47.424
2161
+ - type: mrr_at_100
2162
+ value: 48.365
2163
+ - type: mrr_at_1000
2164
+ value: 48.413000000000004
2165
+ - type: mrr_at_3
2166
+ value: 45.444
2167
+ - type: mrr_at_5
2168
+ value: 46.011
2169
+ - type: ndcg_at_1
2170
+ value: 39.333
2171
+ - type: ndcg_at_10
2172
+ value: 50.324999999999996
2173
+ - type: ndcg_at_100
2174
+ value: 55.74400000000001
2175
+ - type: ndcg_at_1000
2176
+ value: 57.092
2177
+ - type: ndcg_at_3
2178
+ value: 45.805
2179
+ - type: ndcg_at_5
2180
+ value: 46.826
2181
+ - type: precision_at_1
2182
+ value: 39.333
2183
+ - type: precision_at_10
2184
+ value: 6.9
2185
+ - type: precision_at_100
2186
+ value: 0.993
2187
+ - type: precision_at_1000
2188
+ value: 0.11100000000000002
2189
+ - type: precision_at_3
2190
+ value: 18.111
2191
+ - type: precision_at_5
2192
+ value: 11.466999999999999
2193
+ - type: recall_at_1
2194
+ value: 37.083
2195
+ - type: recall_at_10
2196
+ value: 63.444
2197
+ - type: recall_at_100
2198
+ value: 88.617
2199
+ - type: recall_at_1000
2200
+ value: 98.867
2201
+ - type: recall_at_3
2202
+ value: 50.556
2203
+ - type: recall_at_5
2204
+ value: 53.056000000000004
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: None
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.66039603960397
2216
+ - type: cos_sim_ap
2217
+ value: 89.16346887114837
2218
+ - type: cos_sim_f1
2219
+ value: 83.18072289156628
2220
+ - type: cos_sim_precision
2221
+ value: 80.27906976744185
2222
+ - type: cos_sim_recall
2223
+ value: 86.3
2224
+ - type: dot_accuracy
2225
+ value: 99.66039603960397
2226
+ - type: dot_ap
2227
+ value: 89.16346887114837
2228
+ - type: dot_f1
2229
+ value: 83.18072289156628
2230
+ - type: dot_precision
2231
+ value: 80.27906976744185
2232
+ - type: dot_recall
2233
+ value: 86.3
2234
+ - type: euclidean_accuracy
2235
+ value: 99.66039603960397
2236
+ - type: euclidean_ap
2237
+ value: 89.16346887114837
2238
+ - type: euclidean_f1
2239
+ value: 83.18072289156628
2240
+ - type: euclidean_precision
2241
+ value: 80.27906976744185
2242
+ - type: euclidean_recall
2243
+ value: 86.3
2244
+ - type: manhattan_accuracy
2245
+ value: 99.66930693069307
2246
+ - type: manhattan_ap
2247
+ value: 89.13276894140405
2248
+ - type: manhattan_f1
2249
+ value: 83.46534653465346
2250
+ - type: manhattan_precision
2251
+ value: 82.6470588235294
2252
+ - type: manhattan_recall
2253
+ value: 84.3
2254
+ - type: max_accuracy
2255
+ value: 99.66930693069307
2256
+ - type: max_ap
2257
+ value: 89.16346887114837
2258
+ - type: max_f1
2259
+ value: 83.46534653465346
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: None
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 49.394155025012324
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: None
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 30.32321222461949
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: None
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 43.523517787741575
2293
+ - type: mrr
2294
+ value: 44.07447638146168
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: None
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 31.28542082978425
2306
+ - type: cos_sim_spearman
2307
+ value: 30.039804865964005
2308
+ - type: dot_pearson
2309
+ value: 31.28542082880828
2310
+ - type: dot_spearman
2311
+ value: 30.051397798547818
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: None
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.157
2323
+ - type: map_at_10
2324
+ value: 0.989
2325
+ - type: map_at_100
2326
+ value: 5.3580000000000005
2327
+ - type: map_at_1000
2328
+ value: 13.614999999999998
2329
+ - type: map_at_3
2330
+ value: 0.391
2331
+ - type: map_at_5
2332
+ value: 0.557
2333
+ - type: mrr_at_1
2334
+ value: 57.99999999999999
2335
+ - type: mrr_at_10
2336
+ value: 69.039
2337
+ - type: mrr_at_100
2338
+ value: 69.618
2339
+ - type: mrr_at_1000
2340
+ value: 69.618
2341
+ - type: mrr_at_3
2342
+ value: 67.667
2343
+ - type: mrr_at_5
2344
+ value: 68.56700000000001
2345
+ - type: ndcg_at_1
2346
+ value: 55.00000000000001
2347
+ - type: ndcg_at_10
2348
+ value: 48.394
2349
+ - type: ndcg_at_100
2350
+ value: 37.158
2351
+ - type: ndcg_at_1000
2352
+ value: 34.204
2353
+ - type: ndcg_at_3
2354
+ value: 53.754000000000005
2355
+ - type: ndcg_at_5
2356
+ value: 50.712999999999994
2357
+ - type: precision_at_1
2358
+ value: 57.99999999999999
2359
+ - type: precision_at_10
2360
+ value: 51.800000000000004
2361
+ - type: precision_at_100
2362
+ value: 39.26
2363
+ - type: precision_at_1000
2364
+ value: 16.503999999999998
2365
+ - type: precision_at_3
2366
+ value: 57.333
2367
+ - type: precision_at_5
2368
+ value: 52.800000000000004
2369
+ - type: recall_at_1
2370
+ value: 0.157
2371
+ - type: recall_at_10
2372
+ value: 1.238
2373
+ - type: recall_at_100
2374
+ value: 8.674
2375
+ - type: recall_at_1000
2376
+ value: 33.222
2377
+ - type: recall_at_3
2378
+ value: 0.436
2379
+ - type: recall_at_5
2380
+ value: 0.643
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: None
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 1.385
2392
+ - type: map_at_10
2393
+ value: 7.414
2394
+ - type: map_at_100
2395
+ value: 13.084999999999999
2396
+ - type: map_at_1000
2397
+ value: 14.765
2398
+ - type: map_at_3
2399
+ value: 3.5909999999999997
2400
+ - type: map_at_5
2401
+ value: 5.402
2402
+ - type: mrr_at_1
2403
+ value: 20.408
2404
+ - type: mrr_at_10
2405
+ value: 37.669000000000004
2406
+ - type: mrr_at_100
2407
+ value: 38.823
2408
+ - type: mrr_at_1000
2409
+ value: 38.823
2410
+ - type: mrr_at_3
2411
+ value: 33.672999999999995
2412
+ - type: mrr_at_5
2413
+ value: 35.612
2414
+ - type: ndcg_at_1
2415
+ value: 19.387999999999998
2416
+ - type: ndcg_at_10
2417
+ value: 19.288
2418
+ - type: ndcg_at_100
2419
+ value: 33.376
2420
+ - type: ndcg_at_1000
2421
+ value: 45.28
2422
+ - type: ndcg_at_3
2423
+ value: 20.511
2424
+ - type: ndcg_at_5
2425
+ value: 21.182000000000002
2426
+ - type: precision_at_1
2427
+ value: 20.408
2428
+ - type: precision_at_10
2429
+ value: 18.776
2430
+ - type: precision_at_100
2431
+ value: 8.061
2432
+ - type: precision_at_1000
2433
+ value: 1.5779999999999998
2434
+ - type: precision_at_3
2435
+ value: 23.810000000000002
2436
+ - type: precision_at_5
2437
+ value: 23.673
2438
+ - type: recall_at_1
2439
+ value: 1.385
2440
+ - type: recall_at_10
2441
+ value: 13.113
2442
+ - type: recall_at_100
2443
+ value: 48.345
2444
+ - type: recall_at_1000
2445
+ value: 85.087
2446
+ - type: recall_at_3
2447
+ value: 4.932
2448
+ - type: recall_at_5
2449
+ value: 8.4
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: None
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 79.2658
2461
+ - type: ap
2462
+ value: 19.45051650328674
2463
+ - type: f1
2464
+ value: 61.721255030714005
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: None
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 60.19524617996604
2476
+ - type: f1
2477
+ value: 60.47726202926952
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: None
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 42.20230019842334
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: None
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 83.32240567443525
2500
+ - type: cos_sim_ap
2501
+ value: 63.95052535841297
2502
+ - type: cos_sim_f1
2503
+ value: 60.78094302554028
2504
+ - type: cos_sim_precision
2505
+ value: 56.844281120808446
2506
+ - type: cos_sim_recall
2507
+ value: 65.30343007915567
2508
+ - type: dot_accuracy
2509
+ value: 83.32240567443525
2510
+ - type: dot_ap
2511
+ value: 63.95052535841297
2512
+ - type: dot_f1
2513
+ value: 60.78094302554028
2514
+ - type: dot_precision
2515
+ value: 56.844281120808446
2516
+ - type: dot_recall
2517
+ value: 65.30343007915567
2518
+ - type: euclidean_accuracy
2519
+ value: 83.32240567443525
2520
+ - type: euclidean_ap
2521
+ value: 63.95052535841297
2522
+ - type: euclidean_f1
2523
+ value: 60.78094302554028
2524
+ - type: euclidean_precision
2525
+ value: 56.844281120808446
2526
+ - type: euclidean_recall
2527
+ value: 65.30343007915567
2528
+ - type: manhattan_accuracy
2529
+ value: 83.30452405078381
2530
+ - type: manhattan_ap
2531
+ value: 63.82521079916541
2532
+ - type: manhattan_f1
2533
+ value: 60.567750833237554
2534
+ - type: manhattan_precision
2535
+ value: 53.65506006923234
2536
+ - type: manhattan_recall
2537
+ value: 69.52506596306068
2538
+ - type: max_accuracy
2539
+ value: 83.32240567443525
2540
+ - type: max_ap
2541
+ value: 63.95052535841297
2542
+ - type: max_f1
2543
+ value: 60.78094302554028
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: None
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 87.51309814879497
2555
+ - type: cos_sim_ap
2556
+ value: 83.04143677647984
2557
+ - type: cos_sim_f1
2558
+ value: 75.14412661109682
2559
+ - type: cos_sim_precision
2560
+ value: 71.82871182871183
2561
+ - type: cos_sim_recall
2562
+ value: 78.78041268863566
2563
+ - type: dot_accuracy
2564
+ value: 87.51309814879497
2565
+ - type: dot_ap
2566
+ value: 83.0414382592019
2567
+ - type: dot_f1
2568
+ value: 75.14412661109682
2569
+ - type: dot_precision
2570
+ value: 71.82871182871183
2571
+ - type: dot_recall
2572
+ value: 78.78041268863566
2573
+ - type: euclidean_accuracy
2574
+ value: 87.51309814879497
2575
+ - type: euclidean_ap
2576
+ value: 83.04144849399968
2577
+ - type: euclidean_f1
2578
+ value: 75.14412661109682
2579
+ - type: euclidean_precision
2580
+ value: 71.82871182871183
2581
+ - type: euclidean_recall
2582
+ value: 78.78041268863566
2583
+ - type: manhattan_accuracy
2584
+ value: 87.50921721581868
2585
+ - type: manhattan_ap
2586
+ value: 82.97187030449552
2587
+ - type: manhattan_f1
2588
+ value: 74.93584260051325
2589
+ - type: manhattan_precision
2590
+ value: 72.48003453485863
2591
+ - type: manhattan_recall
2592
+ value: 77.56390514320911
2593
+ - type: max_accuracy
2594
+ value: 87.51309814879497
2595
+ - type: max_ap
2596
+ value: 83.04144849399968
2597
+ - type: max_f1
2598
+ value: 75.14412661109682
2599
+ ---