--- tags: - mteb model-index: - name: nomic_classification_100 results: - task: type: Classification dataset: type: None name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 70.35820895522387 - type: ap value: 32.749463629599404 - type: f1 value: 64.24277142151362 - task: type: Classification dataset: type: None name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 64.705075 - type: ap value: 59.80751870729784 - type: f1 value: 64.44356439771583 - task: type: Classification dataset: type: None name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 33.642 - type: f1 value: 33.115627459191316 - task: type: Retrieval dataset: type: None name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 17.852 - type: map_at_10 value: 29.279 - type: map_at_100 value: 30.55 - type: map_at_1000 value: 30.605 - type: map_at_3 value: 25.296000000000003 - type: map_at_5 value: 27.498 - type: mrr_at_1 value: 18.137 - type: mrr_at_10 value: 29.398999999999997 - type: mrr_at_100 value: 30.677 - type: mrr_at_1000 value: 30.731 - type: mrr_at_3 value: 25.427 - type: mrr_at_5 value: 27.614 - type: ndcg_at_1 value: 17.852 - type: ndcg_at_10 value: 36.071999999999996 - type: ndcg_at_100 value: 42.403 - type: ndcg_at_1000 value: 43.733 - type: ndcg_at_3 value: 27.799000000000003 - type: ndcg_at_5 value: 31.805 - type: precision_at_1 value: 17.852 - type: precision_at_10 value: 5.797 - type: precision_at_100 value: 0.878 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 11.688 - type: precision_at_5 value: 8.976 - type: recall_at_1 value: 17.852 - type: recall_at_10 value: 57.965999999999994 - type: recall_at_100 value: 87.83800000000001 - type: recall_at_1000 value: 98.08 - type: recall_at_3 value: 35.064 - type: recall_at_5 value: 44.879000000000005 - task: type: Clustering dataset: type: None name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 29.25407935159316 - task: type: Clustering dataset: type: None name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 19.74540490543985 - task: type: Reranking dataset: type: None name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 50.92680362916445 - type: mrr value: 63.515697137580794 - task: type: STS dataset: type: None name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 72.8794628935656 - type: cos_sim_spearman value: 72.28899655141599 - type: euclidean_pearson value: 72.84840274301827 - type: euclidean_spearman value: 72.28899655141599 - type: manhattan_pearson value: 72.27814398382203 - type: manhattan_spearman value: 71.66970533201172 - task: type: Classification dataset: type: None name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 66.20129870129871 - type: f1 value: 65.02435616242589 - task: type: Clustering dataset: type: None name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 28.56746746078776 - task: type: Clustering dataset: type: None name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 19.212994376812908 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 17.7 - type: map_at_10 value: 23.182 - type: map_at_100 value: 24.2 - type: map_at_1000 value: 24.354 - type: map_at_3 value: 21.448 - type: map_at_5 value: 22.394 - type: mrr_at_1 value: 21.459 - type: mrr_at_10 value: 27.538 - type: mrr_at_100 value: 28.399 - type: mrr_at_1000 value: 28.479 - type: mrr_at_3 value: 25.775 - type: mrr_at_5 value: 26.705000000000002 - type: ndcg_at_1 value: 21.459 - type: ndcg_at_10 value: 26.987 - type: ndcg_at_100 value: 31.935999999999996 - type: ndcg_at_1000 value: 35.335 - type: ndcg_at_3 value: 24.214 - type: ndcg_at_5 value: 25.344 - type: precision_at_1 value: 21.459 - type: precision_at_10 value: 5.007000000000001 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 11.445 - type: precision_at_5 value: 8.155 - type: recall_at_1 value: 17.7 - type: recall_at_10 value: 33.698 - type: recall_at_100 value: 55.933 - type: recall_at_1000 value: 79.567 - type: recall_at_3 value: 25.331 - type: recall_at_5 value: 28.681 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 13.008000000000001 - type: map_at_10 value: 17.331 - type: map_at_100 value: 18.128 - type: map_at_1000 value: 18.253 - type: map_at_3 value: 15.708 - type: map_at_5 value: 16.601 - type: mrr_at_1 value: 16.624 - type: mrr_at_10 value: 21.038999999999998 - type: mrr_at_100 value: 21.782 - type: mrr_at_1000 value: 21.869 - type: mrr_at_3 value: 19.320999999999998 - type: mrr_at_5 value: 20.266000000000002 - type: ndcg_at_1 value: 16.624 - type: ndcg_at_10 value: 20.584 - type: ndcg_at_100 value: 24.43 - type: ndcg_at_1000 value: 27.486 - type: ndcg_at_3 value: 17.724999999999998 - type: ndcg_at_5 value: 18.990000000000002 - type: precision_at_1 value: 16.624 - type: precision_at_10 value: 3.8850000000000002 - type: precision_at_100 value: 0.7250000000000001 - type: precision_at_1000 value: 0.122 - type: precision_at_3 value: 8.514 - type: precision_at_5 value: 6.204 - type: recall_at_1 value: 13.008000000000001 - type: recall_at_10 value: 26.799 - type: recall_at_100 value: 43.802 - type: recall_at_1000 value: 65.035 - type: recall_at_3 value: 18.411 - type: recall_at_5 value: 21.887999999999998 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 18.459 - type: map_at_10 value: 24.775 - type: map_at_100 value: 25.691999999999997 - type: map_at_1000 value: 25.802999999999997 - type: map_at_3 value: 22.784 - type: map_at_5 value: 23.764 - type: mrr_at_1 value: 21.379 - type: mrr_at_10 value: 27.555000000000003 - type: mrr_at_100 value: 28.355000000000004 - type: mrr_at_1000 value: 28.438999999999997 - type: mrr_at_3 value: 25.663999999999998 - type: mrr_at_5 value: 26.598 - type: ndcg_at_1 value: 21.379 - type: ndcg_at_10 value: 28.691 - type: ndcg_at_100 value: 33.387 - type: ndcg_at_1000 value: 36.299 - type: ndcg_at_3 value: 24.883 - type: ndcg_at_5 value: 26.438 - type: precision_at_1 value: 21.379 - type: precision_at_10 value: 4.777 - type: precision_at_100 value: 0.7799999999999999 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 11.16 - type: precision_at_5 value: 7.7490000000000006 - type: recall_at_1 value: 18.459 - type: recall_at_10 value: 37.964999999999996 - type: recall_at_100 value: 59.728 - type: recall_at_1000 value: 81.351 - type: recall_at_3 value: 27.538 - type: recall_at_5 value: 31.464 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackGisRetrieval config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 8.324 - type: map_at_10 value: 10.779 - type: map_at_100 value: 11.371 - type: map_at_1000 value: 11.466999999999999 - type: map_at_3 value: 9.922 - type: map_at_5 value: 10.319 - type: mrr_at_1 value: 9.153 - type: mrr_at_10 value: 11.700000000000001 - type: mrr_at_100 value: 12.314 - type: mrr_at_1000 value: 12.406 - type: mrr_at_3 value: 10.81 - type: mrr_at_5 value: 11.234 - type: ndcg_at_1 value: 9.153 - type: ndcg_at_10 value: 12.472 - type: ndcg_at_100 value: 15.942 - type: ndcg_at_1000 value: 19.118 - type: ndcg_at_3 value: 10.644 - type: ndcg_at_5 value: 11.355 - type: precision_at_1 value: 9.153 - type: precision_at_10 value: 1.921 - type: precision_at_100 value: 0.391 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_3 value: 4.444 - type: precision_at_5 value: 3.073 - type: recall_at_1 value: 8.324 - type: recall_at_10 value: 16.971 - type: recall_at_100 value: 34.041 - type: recall_at_1000 value: 59.45399999999999 - type: recall_at_3 value: 11.77 - type: recall_at_5 value: 13.522 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 3.998 - type: map_at_10 value: 6.22 - type: map_at_100 value: 6.687 - type: map_at_1000 value: 6.796 - type: map_at_3 value: 5.124 - type: map_at_5 value: 5.705 - type: mrr_at_1 value: 5.224 - type: mrr_at_10 value: 7.915 - type: mrr_at_100 value: 8.433 - type: mrr_at_1000 value: 8.530999999999999 - type: mrr_at_3 value: 6.654 - type: mrr_at_5 value: 7.276000000000001 - type: ndcg_at_1 value: 5.224 - type: ndcg_at_10 value: 8.238 - type: ndcg_at_100 value: 11.126999999999999 - type: ndcg_at_1000 value: 14.552999999999999 - type: ndcg_at_3 value: 6.0249999999999995 - type: ndcg_at_5 value: 6.981999999999999 - type: precision_at_1 value: 5.224 - type: precision_at_10 value: 1.7160000000000002 - type: precision_at_100 value: 0.371 - type: precision_at_1000 value: 0.078 - type: precision_at_3 value: 2.9850000000000003 - type: precision_at_5 value: 2.413 - type: recall_at_1 value: 3.998 - type: recall_at_10 value: 12.995999999999999 - type: recall_at_100 value: 26.819 - type: recall_at_1000 value: 52.608 - type: recall_at_3 value: 6.721000000000001 - type: recall_at_5 value: 9.198 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 12.331 - type: map_at_10 value: 16.913 - type: map_at_100 value: 17.841 - type: map_at_1000 value: 17.977 - type: map_at_3 value: 15.633 - type: map_at_5 value: 16.256 - type: mrr_at_1 value: 15.110999999999999 - type: mrr_at_10 value: 20.419999999999998 - type: mrr_at_100 value: 21.294 - type: mrr_at_1000 value: 21.386 - type: mrr_at_3 value: 18.961 - type: mrr_at_5 value: 19.682 - type: ndcg_at_1 value: 15.110999999999999 - type: ndcg_at_10 value: 20.115 - type: ndcg_at_100 value: 24.914 - type: ndcg_at_1000 value: 28.375 - type: ndcg_at_3 value: 17.732 - type: ndcg_at_5 value: 18.658 - type: precision_at_1 value: 15.110999999999999 - type: precision_at_10 value: 3.696 - type: precision_at_100 value: 0.762 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 8.566 - type: precision_at_5 value: 5.9670000000000005 - type: recall_at_1 value: 12.331 - type: recall_at_10 value: 26.429000000000002 - type: recall_at_100 value: 47.341 - type: recall_at_1000 value: 72.149 - type: recall_at_3 value: 19.467000000000002 - type: recall_at_5 value: 21.981 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 8.262 - type: map_at_10 value: 11.962 - type: map_at_100 value: 12.729 - type: map_at_1000 value: 12.86 - type: map_at_3 value: 10.65 - type: map_at_5 value: 11.388 - type: mrr_at_1 value: 10.502 - type: mrr_at_10 value: 14.715 - type: mrr_at_100 value: 15.484 - type: mrr_at_1000 value: 15.581999999999999 - type: mrr_at_3 value: 13.299 - type: mrr_at_5 value: 14.097999999999999 - type: ndcg_at_1 value: 10.502 - type: ndcg_at_10 value: 14.649000000000001 - type: ndcg_at_100 value: 18.738 - type: ndcg_at_1000 value: 22.456 - type: ndcg_at_3 value: 12.222 - type: ndcg_at_5 value: 13.314 - type: precision_at_1 value: 10.502 - type: precision_at_10 value: 2.82 - type: precision_at_100 value: 0.588 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 5.936 - type: precision_at_5 value: 4.452 - type: recall_at_1 value: 8.262 - type: recall_at_10 value: 20.168 - type: recall_at_100 value: 38.405 - type: recall_at_1000 value: 65.694 - type: recall_at_3 value: 13.428999999999998 - type: recall_at_5 value: 16.229 - task: type: Retrieval dataset: type: mteb/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 10.117416666666665 - type: map_at_10 value: 13.858333333333334 - type: map_at_100 value: 14.565166666666668 - type: map_at_1000 value: 14.68266666666667 - type: map_at_3 value: 12.60983333333333 - type: map_at_5 value: 13.277416666666667 - type: mrr_at_1 value: 12.332833333333335 - type: mrr_at_10 value: 16.376333333333335 - type: mrr_at_100 value: 17.063333333333333 - type: mrr_at_1000 value: 17.1535 - type: mrr_at_3 value: 15.040666666666667 - type: mrr_at_5 value: 15.764833333333334 - type: ndcg_at_1 value: 12.332833333333335 - type: ndcg_at_10 value: 16.51366666666667 - type: ndcg_at_100 value: 20.2845 - type: ndcg_at_1000 value: 23.54025 - type: ndcg_at_3 value: 14.171250000000002 - type: ndcg_at_5 value: 15.193583333333333 - type: precision_at_1 value: 12.332833333333335 - type: precision_at_10 value: 2.983083333333333 - type: precision_at_100 value: 0.58325 - type: precision_at_1000 value: 0.10250000000000001 - type: precision_at_3 value: 6.626083333333334 - type: precision_at_5 value: 4.774916666666665 - type: recall_at_1 value: 10.117416666666665 - type: recall_at_10 value: 22.14666666666667 - type: recall_at_100 value: 39.5745 - type: recall_at_1000 value: 63.73550000000001 - type: recall_at_3 value: 15.431666666666665 - type: recall_at_5 value: 18.1215 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 7.431 - type: map_at_10 value: 10.172 - type: map_at_100 value: 10.639999999999999 - type: map_at_1000 value: 10.716000000000001 - type: map_at_3 value: 9.242 - type: map_at_5 value: 9.614 - type: mrr_at_1 value: 9.202 - type: mrr_at_10 value: 12.08 - type: mrr_at_100 value: 12.58 - type: mrr_at_1000 value: 12.649 - type: mrr_at_3 value: 11.145 - type: mrr_at_5 value: 11.59 - type: ndcg_at_1 value: 9.202 - type: ndcg_at_10 value: 12.291 - type: ndcg_at_100 value: 14.940999999999999 - type: ndcg_at_1000 value: 17.325 - type: ndcg_at_3 value: 10.446 - type: ndcg_at_5 value: 11.027000000000001 - type: precision_at_1 value: 9.202 - type: precision_at_10 value: 2.193 - type: precision_at_100 value: 0.388 - type: precision_at_1000 value: 0.065 - type: precision_at_3 value: 4.806 - type: precision_at_5 value: 3.374 - type: recall_at_1 value: 7.431 - type: recall_at_10 value: 17.197000000000003 - type: recall_at_100 value: 29.704000000000004 - type: recall_at_1000 value: 48.278999999999996 - type: recall_at_3 value: 11.616999999999999 - type: recall_at_5 value: 13.181000000000001 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackTexRetrieval config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 5.348 - type: map_at_10 value: 7.591 - type: map_at_100 value: 8.109 - type: map_at_1000 value: 8.206 - type: map_at_3 value: 6.782000000000001 - type: map_at_5 value: 7.244000000000001 - type: mrr_at_1 value: 6.641 - type: mrr_at_10 value: 9.281 - type: mrr_at_100 value: 9.838 - type: mrr_at_1000 value: 9.922 - type: mrr_at_3 value: 8.286999999999999 - type: mrr_at_5 value: 8.866999999999999 - type: ndcg_at_1 value: 6.641 - type: ndcg_at_10 value: 9.302000000000001 - type: ndcg_at_100 value: 12.200999999999999 - type: ndcg_at_1000 value: 15.223999999999998 - type: ndcg_at_3 value: 7.692 - type: ndcg_at_5 value: 8.474 - type: precision_at_1 value: 6.641 - type: precision_at_10 value: 1.755 - type: precision_at_100 value: 0.388 - type: precision_at_1000 value: 0.079 - type: precision_at_3 value: 3.6249999999999996 - type: precision_at_5 value: 2.753 - type: recall_at_1 value: 5.348 - type: recall_at_10 value: 12.887 - type: recall_at_100 value: 26.391 - type: recall_at_1000 value: 49.156 - type: recall_at_3 value: 8.519 - type: recall_at_5 value: 10.431 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 7.9750000000000005 - type: map_at_10 value: 11.28 - type: map_at_100 value: 11.953 - type: map_at_1000 value: 12.051 - type: map_at_3 value: 10.022 - type: map_at_5 value: 10.807 - type: mrr_at_1 value: 9.795 - type: mrr_at_10 value: 13.544999999999998 - type: mrr_at_100 value: 14.249999999999998 - type: mrr_at_1000 value: 14.341000000000001 - type: mrr_at_3 value: 12.174 - type: mrr_at_5 value: 13.041 - type: ndcg_at_1 value: 9.795 - type: ndcg_at_10 value: 13.697000000000001 - type: ndcg_at_100 value: 17.389 - type: ndcg_at_1000 value: 20.46 - type: ndcg_at_3 value: 11.277 - type: ndcg_at_5 value: 12.579 - type: precision_at_1 value: 9.795 - type: precision_at_10 value: 2.435 - type: precision_at_100 value: 0.481 - type: precision_at_1000 value: 0.084 - type: precision_at_3 value: 5.255 - type: precision_at_5 value: 3.955 - type: recall_at_1 value: 7.9750000000000005 - type: recall_at_10 value: 18.981 - type: recall_at_100 value: 36.178 - type: recall_at_1000 value: 59.46900000000001 - type: recall_at_3 value: 12.371 - type: recall_at_5 value: 15.613 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 10.742 - type: map_at_10 value: 15.346000000000002 - type: map_at_100 value: 16.153000000000002 - type: map_at_1000 value: 16.311999999999998 - type: map_at_3 value: 14.222999999999999 - type: map_at_5 value: 14.777000000000001 - type: mrr_at_1 value: 14.032 - type: mrr_at_10 value: 18.83 - type: mrr_at_100 value: 19.564999999999998 - type: mrr_at_1000 value: 19.655 - type: mrr_at_3 value: 17.523 - type: mrr_at_5 value: 18.244 - type: ndcg_at_1 value: 14.032 - type: ndcg_at_10 value: 18.496000000000002 - type: ndcg_at_100 value: 22.377 - type: ndcg_at_1000 value: 26.284000000000002 - type: ndcg_at_3 value: 16.520000000000003 - type: ndcg_at_5 value: 17.276 - type: precision_at_1 value: 14.032 - type: precision_at_10 value: 3.5770000000000004 - type: precision_at_100 value: 0.783 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 7.971 - type: precision_at_5 value: 5.692 - type: recall_at_1 value: 10.742 - type: recall_at_10 value: 24.157999999999998 - type: recall_at_100 value: 42.091 - type: recall_at_1000 value: 70.054 - type: recall_at_3 value: 17.916999999999998 - type: recall_at_5 value: 20.131 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 7.831 - type: map_at_10 value: 10.749 - type: map_at_100 value: 11.279 - type: map_at_1000 value: 11.397 - type: map_at_3 value: 9.78 - type: map_at_5 value: 10.459999999999999 - type: mrr_at_1 value: 8.872 - type: mrr_at_10 value: 11.898 - type: mrr_at_100 value: 12.466000000000001 - type: mrr_at_1000 value: 12.583 - type: mrr_at_3 value: 10.875 - type: mrr_at_5 value: 11.577 - type: ndcg_at_1 value: 8.872 - type: ndcg_at_10 value: 12.642000000000001 - type: ndcg_at_100 value: 16.032 - type: ndcg_at_1000 value: 19.567999999999998 - type: ndcg_at_3 value: 10.674999999999999 - type: ndcg_at_5 value: 11.886 - type: precision_at_1 value: 8.872 - type: precision_at_10 value: 2.015 - type: precision_at_100 value: 0.41200000000000003 - type: precision_at_1000 value: 0.077 - type: precision_at_3 value: 4.806 - type: precision_at_5 value: 3.512 - type: recall_at_1 value: 7.831 - type: recall_at_10 value: 17.511 - type: recall_at_100 value: 34.461000000000006 - type: recall_at_1000 value: 62.01 - type: recall_at_3 value: 12.089 - type: recall_at_5 value: 15.139 - task: type: Retrieval dataset: type: None name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 3.3300000000000005 - type: map_at_10 value: 5.8709999999999996 - type: map_at_100 value: 6.7860000000000005 - type: map_at_1000 value: 6.955 - type: map_at_3 value: 4.714 - type: map_at_5 value: 5.26 - type: mrr_at_1 value: 7.101 - type: mrr_at_10 value: 12.125 - type: mrr_at_100 value: 13.200000000000001 - type: mrr_at_1000 value: 13.295000000000002 - type: mrr_at_3 value: 10.119 - type: mrr_at_5 value: 11.038 - type: ndcg_at_1 value: 7.101 - type: ndcg_at_10 value: 9.159 - type: ndcg_at_100 value: 14.030000000000001 - type: ndcg_at_1000 value: 18.013 - type: ndcg_at_3 value: 6.6739999999999995 - type: ndcg_at_5 value: 7.4719999999999995 - type: precision_at_1 value: 7.101 - type: precision_at_10 value: 3.16 - type: precision_at_100 value: 0.84 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 5.081 - type: precision_at_5 value: 4.143 - type: recall_at_1 value: 3.3300000000000005 - type: recall_at_10 value: 12.215 - type: recall_at_100 value: 29.683999999999997 - type: recall_at_1000 value: 52.951 - type: recall_at_3 value: 6.356000000000001 - type: recall_at_5 value: 8.315 - task: type: Retrieval dataset: type: None name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 1.718 - type: map_at_10 value: 3.639 - type: map_at_100 value: 4.853 - type: map_at_1000 value: 5.219 - type: map_at_3 value: 2.6149999999999998 - type: map_at_5 value: 3.073 - type: mrr_at_1 value: 20.0 - type: mrr_at_10 value: 26.88 - type: mrr_at_100 value: 27.753 - type: mrr_at_1000 value: 27.822000000000003 - type: mrr_at_3 value: 24.667 - type: mrr_at_5 value: 25.654 - type: ndcg_at_1 value: 15.0 - type: ndcg_at_10 value: 10.878 - type: ndcg_at_100 value: 12.011 - type: ndcg_at_1000 value: 16.492 - type: ndcg_at_3 value: 12.818999999999999 - type: ndcg_at_5 value: 11.554 - type: precision_at_1 value: 20.0 - type: precision_at_10 value: 9.625 - type: precision_at_100 value: 3.037 - type: precision_at_1000 value: 0.7080000000000001 - type: precision_at_3 value: 15.082999999999998 - type: precision_at_5 value: 12.1 - type: recall_at_1 value: 1.718 - type: recall_at_10 value: 5.716 - type: recall_at_100 value: 14.266000000000002 - type: recall_at_1000 value: 30.012 - type: recall_at_3 value: 3.108 - type: recall_at_5 value: 4.181 - task: type: Classification dataset: type: None name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 41.114999999999995 - type: f1 value: 37.00141090816854 - task: type: Retrieval dataset: type: None name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 5.523 - type: map_at_10 value: 8.036 - type: map_at_100 value: 8.581999999999999 - type: map_at_1000 value: 8.657 - type: map_at_3 value: 7.13 - type: map_at_5 value: 7.536 - type: mrr_at_1 value: 5.836 - type: mrr_at_10 value: 8.547 - type: mrr_at_100 value: 9.123000000000001 - type: mrr_at_1000 value: 9.197 - type: mrr_at_3 value: 7.563000000000001 - type: mrr_at_5 value: 8.006 - type: ndcg_at_1 value: 5.836 - type: ndcg_at_10 value: 9.764000000000001 - type: ndcg_at_100 value: 12.866 - type: ndcg_at_1000 value: 15.243 - type: ndcg_at_3 value: 7.7700000000000005 - type: ndcg_at_5 value: 8.518 - type: precision_at_1 value: 5.836 - type: precision_at_10 value: 1.6070000000000002 - type: precision_at_100 value: 0.331 - type: precision_at_1000 value: 0.055 - type: precision_at_3 value: 3.2849999999999997 - type: precision_at_5 value: 2.37 - type: recall_at_1 value: 5.523 - type: recall_at_10 value: 14.795 - type: recall_at_100 value: 29.932 - type: recall_at_1000 value: 48.946 - type: recall_at_3 value: 9.208 - type: recall_at_5 value: 10.984 - task: type: Retrieval dataset: type: None name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 4.135 - type: map_at_10 value: 6.433999999999999 - type: map_at_100 value: 7.196 - type: map_at_1000 value: 7.356999999999999 - type: map_at_3 value: 5.339 - type: map_at_5 value: 5.878 - type: mrr_at_1 value: 8.796 - type: mrr_at_10 value: 12.357999999999999 - type: mrr_at_100 value: 13.208 - type: mrr_at_1000 value: 13.318 - type: mrr_at_3 value: 10.777000000000001 - type: mrr_at_5 value: 11.525 - type: ndcg_at_1 value: 8.796 - type: ndcg_at_10 value: 9.332 - type: ndcg_at_100 value: 13.517999999999999 - type: ndcg_at_1000 value: 17.907999999999998 - type: ndcg_at_3 value: 7.481999999999999 - type: ndcg_at_5 value: 8.065 - type: precision_at_1 value: 8.796 - type: precision_at_10 value: 2.8240000000000003 - type: precision_at_100 value: 0.705 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_3 value: 4.887 - type: precision_at_5 value: 3.8580000000000005 - type: recall_at_1 value: 4.135 - type: recall_at_10 value: 12.292 - type: recall_at_100 value: 28.915999999999997 - type: recall_at_1000 value: 57.477999999999994 - type: recall_at_3 value: 6.747 - type: recall_at_5 value: 8.667 - task: type: Retrieval dataset: type: None name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 5.928 - type: map_at_10 value: 8.469 - type: map_at_100 value: 8.936 - type: map_at_1000 value: 9.02 - type: map_at_3 value: 7.582 - type: map_at_5 value: 8.021 - type: mrr_at_1 value: 11.857 - type: mrr_at_10 value: 15.675 - type: mrr_at_100 value: 16.273 - type: mrr_at_1000 value: 16.356 - type: mrr_at_3 value: 14.347999999999999 - type: mrr_at_5 value: 14.995 - type: ndcg_at_1 value: 11.857 - type: ndcg_at_10 value: 11.651 - type: ndcg_at_100 value: 14.374999999999998 - type: ndcg_at_1000 value: 16.912 - type: ndcg_at_3 value: 9.625 - type: ndcg_at_5 value: 10.474 - type: precision_at_1 value: 11.857 - type: precision_at_10 value: 2.777 - type: precision_at_100 value: 0.503 - type: precision_at_1000 value: 0.08499999999999999 - type: precision_at_3 value: 6.140000000000001 - type: precision_at_5 value: 4.362 - type: recall_at_1 value: 5.928 - type: recall_at_10 value: 13.883000000000001 - type: recall_at_100 value: 25.137999999999998 - type: recall_at_1000 value: 42.315999999999995 - type: recall_at_3 value: 9.21 - type: recall_at_5 value: 10.905 - task: type: Classification dataset: type: None name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 65.4388 - type: ap value: 60.440774024423426 - type: f1 value: 65.31315753102281 - task: type: Retrieval dataset: type: None name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 3.4479999999999995 - type: map_at_10 value: 5.74 - type: map_at_100 value: 6.2780000000000005 - type: map_at_1000 value: 6.358999999999999 - type: map_at_3 value: 4.82 - type: map_at_5 value: 5.3 - type: mrr_at_1 value: 3.5389999999999997 - type: mrr_at_10 value: 5.906000000000001 - type: mrr_at_100 value: 6.455 - type: mrr_at_1000 value: 6.5360000000000005 - type: mrr_at_3 value: 4.9639999999999995 - type: mrr_at_5 value: 5.453 - type: ndcg_at_1 value: 3.5389999999999997 - type: ndcg_at_10 value: 7.255000000000001 - type: ndcg_at_100 value: 10.308 - type: ndcg_at_1000 value: 12.93 - type: ndcg_at_3 value: 5.314 - type: ndcg_at_5 value: 6.184 - type: precision_at_1 value: 3.5389999999999997 - type: precision_at_10 value: 1.246 - type: precision_at_100 value: 0.28500000000000003 - type: precision_at_1000 value: 0.051000000000000004 - type: precision_at_3 value: 2.297 - type: precision_at_5 value: 1.814 - type: recall_at_1 value: 3.4479999999999995 - type: recall_at_10 value: 11.982 - type: recall_at_100 value: 27.123 - type: recall_at_1000 value: 48.489 - type: recall_at_3 value: 6.607 - type: recall_at_5 value: 8.706 - task: type: Classification dataset: type: None name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 85.9484724122207 - type: f1 value: 85.39768490584245 - task: type: Classification dataset: type: None name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 58.48837209302326 - type: f1 value: 39.10849416181491 - task: type: Classification dataset: type: None name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.632145258910555 - type: f1 value: 58.09773014884143 - task: type: Classification dataset: type: None name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.68325487558843 - type: f1 value: 65.91204845805859 - task: type: Clustering dataset: type: None name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 26.41069242141184 - task: type: Clustering dataset: type: None name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 23.307848920918044 - task: type: Reranking dataset: type: None name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 28.270878365120332 - type: mrr value: 29.057926505909254 - task: type: Retrieval dataset: type: None name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 1.855 - type: map_at_10 value: 3.582 - type: map_at_100 value: 4.694 - type: map_at_1000 value: 5.739 - type: map_at_3 value: 2.677 - type: map_at_5 value: 3.1 - type: mrr_at_1 value: 18.884999999999998 - type: mrr_at_10 value: 27.256999999999998 - type: mrr_at_100 value: 28.327999999999996 - type: mrr_at_1000 value: 28.402 - type: mrr_at_3 value: 24.2 - type: mrr_at_5 value: 26.011 - type: ndcg_at_1 value: 17.957 - type: ndcg_at_10 value: 14.051 - type: ndcg_at_100 value: 14.282 - type: ndcg_at_1000 value: 24.3 - type: ndcg_at_3 value: 15.478 - type: ndcg_at_5 value: 14.782 - type: precision_at_1 value: 18.884999999999998 - type: precision_at_10 value: 10.743 - type: precision_at_100 value: 4.449 - type: precision_at_1000 value: 1.7670000000000001 - type: precision_at_3 value: 14.654 - type: precision_at_5 value: 12.940999999999999 - type: recall_at_1 value: 1.855 - type: recall_at_10 value: 6.861000000000001 - type: recall_at_100 value: 18.044 - type: recall_at_1000 value: 52.712 - type: recall_at_3 value: 3.3369999999999997 - type: recall_at_5 value: 4.562 - task: type: Retrieval dataset: type: None name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 4.881 - type: map_at_10 value: 8.241999999999999 - type: map_at_100 value: 8.956999999999999 - type: map_at_1000 value: 9.062000000000001 - type: map_at_3 value: 6.981 - type: map_at_5 value: 7.61 - type: mrr_at_1 value: 5.5329999999999995 - type: mrr_at_10 value: 9.184000000000001 - type: mrr_at_100 value: 9.918000000000001 - type: mrr_at_1000 value: 10.018 - type: mrr_at_3 value: 7.836 - type: mrr_at_5 value: 8.518 - type: ndcg_at_1 value: 5.5329999999999995 - type: ndcg_at_10 value: 10.554 - type: ndcg_at_100 value: 14.341999999999999 - type: ndcg_at_1000 value: 17.458000000000002 - type: ndcg_at_3 value: 7.8759999999999994 - type: ndcg_at_5 value: 9.023 - type: precision_at_1 value: 5.5329999999999995 - type: precision_at_10 value: 1.944 - type: precision_at_100 value: 0.411 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_3 value: 3.669 - type: precision_at_5 value: 2.8160000000000003 - type: recall_at_1 value: 4.881 - type: recall_at_10 value: 16.898 - type: recall_at_100 value: 34.625 - type: recall_at_1000 value: 58.901 - type: recall_at_3 value: 9.651 - type: recall_at_5 value: 12.35 - task: type: Retrieval dataset: type: None name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 53.159 - type: map_at_10 value: 64.053 - type: map_at_100 value: 64.938 - type: map_at_1000 value: 64.994 - type: map_at_3 value: 61.413 - type: map_at_5 value: 62.966 - type: mrr_at_1 value: 61.129999999999995 - type: mrr_at_10 value: 68.84400000000001 - type: mrr_at_100 value: 69.3 - type: mrr_at_1000 value: 69.319 - type: mrr_at_3 value: 67.113 - type: mrr_at_5 value: 68.162 - type: ndcg_at_1 value: 61.160000000000004 - type: ndcg_at_10 value: 68.944 - type: ndcg_at_100 value: 72.10499999999999 - type: ndcg_at_1000 value: 73.046 - type: ndcg_at_3 value: 65.223 - type: ndcg_at_5 value: 67.05 - type: precision_at_1 value: 61.160000000000004 - type: precision_at_10 value: 10.392999999999999 - type: precision_at_100 value: 1.327 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 28.13 - type: precision_at_5 value: 18.656 - type: recall_at_1 value: 53.159 - type: recall_at_10 value: 78.412 - type: recall_at_100 value: 91.399 - type: recall_at_1000 value: 97.52 - type: recall_at_3 value: 67.794 - type: recall_at_5 value: 72.801 - task: type: Clustering dataset: type: None name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 30.140589231842256 - task: type: Clustering dataset: type: None name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 39.92770613505385 - task: type: Retrieval dataset: type: None name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 1.8450000000000002 - type: map_at_10 value: 4.172 - type: map_at_100 value: 5.092 - type: map_at_1000 value: 5.3100000000000005 - type: map_at_3 value: 3.093 - type: map_at_5 value: 3.6450000000000005 - type: mrr_at_1 value: 9.1 - type: mrr_at_10 value: 15.15 - type: mrr_at_100 value: 16.216 - type: mrr_at_1000 value: 16.332 - type: mrr_at_3 value: 12.55 - type: mrr_at_5 value: 13.975000000000001 - type: ndcg_at_1 value: 9.1 - type: ndcg_at_10 value: 8.065999999999999 - type: ndcg_at_100 value: 12.982 - type: ndcg_at_1000 value: 18.046 - type: ndcg_at_3 value: 7.295999999999999 - type: ndcg_at_5 value: 6.572 - type: precision_at_1 value: 9.1 - type: precision_at_10 value: 4.29 - type: precision_at_100 value: 1.16 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_3 value: 6.833 - type: precision_at_5 value: 5.88 - type: recall_at_1 value: 1.8450000000000002 - type: recall_at_10 value: 8.706999999999999 - type: recall_at_100 value: 23.645 - type: recall_at_1000 value: 48.597 - type: recall_at_3 value: 4.175 - type: recall_at_5 value: 5.973 - task: type: STS dataset: type: None name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 75.59024815989618 - type: cos_sim_spearman value: 68.11624653233133 - type: euclidean_pearson value: 73.27920094980502 - type: euclidean_spearman value: 68.11632959681863 - type: manhattan_pearson value: 72.54935141266294 - type: manhattan_spearman value: 67.12457070604133 - task: type: STS dataset: type: None name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 69.40126270570799 - type: cos_sim_spearman value: 62.14207404840335 - type: euclidean_pearson value: 66.27602017682412 - type: euclidean_spearman value: 62.143384728461314 - type: manhattan_pearson value: 67.07706053549664 - type: manhattan_spearman value: 63.06497657163255 - task: type: STS dataset: type: None name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 75.5989515866992 - type: cos_sim_spearman value: 77.15211512453997 - type: euclidean_pearson value: 76.70296919445704 - type: euclidean_spearman value: 77.15215294384531 - type: manhattan_pearson value: 77.00183340244841 - type: manhattan_spearman value: 77.54347126493187 - task: type: STS dataset: type: None name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 73.76592708615566 - type: cos_sim_spearman value: 70.57102535486983 - type: euclidean_pearson value: 73.16493844323281 - type: euclidean_spearman value: 70.57101566858893 - type: manhattan_pearson value: 73.3644832097739 - type: manhattan_spearman value: 70.93527541966915 - task: type: STS dataset: type: None name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 75.95076880553377 - type: cos_sim_spearman value: 77.68458699868269 - type: euclidean_pearson value: 77.7470713475935 - type: euclidean_spearman value: 77.6845933113232 - type: manhattan_pearson value: 78.19369618957612 - type: manhattan_spearman value: 78.11088657087784 - task: type: STS dataset: type: None name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 71.9715763028299 - type: cos_sim_spearman value: 73.53220647955904 - type: euclidean_pearson value: 73.57406594330985 - type: euclidean_spearman value: 73.53303581777323 - type: manhattan_pearson value: 74.03967460920595 - type: manhattan_spearman value: 74.05778553630698 - task: type: STS dataset: type: None name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 78.73667148725723 - type: cos_sim_spearman value: 80.81028828869353 - type: euclidean_pearson value: 81.15810431179573 - type: euclidean_spearman value: 80.81116429309112 - type: manhattan_pearson value: 81.55719120035107 - type: manhattan_spearman value: 81.20882260152872 - task: type: STS dataset: type: None name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 61.43534524580482 - type: cos_sim_spearman value: 59.839157733781434 - type: euclidean_pearson value: 61.83093863698779 - type: euclidean_spearman value: 59.839157733781434 - type: manhattan_pearson value: 62.55988010471628 - type: manhattan_spearman value: 60.30306061143011 - task: type: STS dataset: type: None name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 72.25188934839379 - type: cos_sim_spearman value: 70.9113050369473 - type: euclidean_pearson value: 72.68710352046212 - type: euclidean_spearman value: 70.9113534378691 - type: manhattan_pearson value: 73.09745859415004 - type: manhattan_spearman value: 71.26505067192102 - task: type: Reranking dataset: type: None name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 67.5036392977626 - type: mrr value: 87.43891003694925 - task: type: Retrieval dataset: type: None name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 20.889 - type: map_at_10 value: 27.165 - type: map_at_100 value: 28.368 - type: map_at_1000 value: 28.483999999999998 - type: map_at_3 value: 25.180999999999997 - type: map_at_5 value: 26.269 - type: mrr_at_1 value: 22.0 - type: mrr_at_10 value: 28.512999999999998 - type: mrr_at_100 value: 29.531000000000002 - type: mrr_at_1000 value: 29.635 - type: mrr_at_3 value: 26.611 - type: mrr_at_5 value: 27.594 - type: ndcg_at_1 value: 22.0 - type: ndcg_at_10 value: 30.814000000000004 - type: ndcg_at_100 value: 36.647999999999996 - type: ndcg_at_1000 value: 39.81 - type: ndcg_at_3 value: 26.845999999999997 - type: ndcg_at_5 value: 28.677999999999997 - type: precision_at_1 value: 22.0 - type: precision_at_10 value: 4.5 - type: precision_at_100 value: 0.773 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 10.778 - type: precision_at_5 value: 7.5329999999999995 - type: recall_at_1 value: 20.889 - type: recall_at_10 value: 40.861 - type: recall_at_100 value: 68.089 - type: recall_at_1000 value: 93.05 - type: recall_at_3 value: 30.083 - type: recall_at_5 value: 34.556 - task: type: PairClassification dataset: type: None name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.47524752475248 - type: cos_sim_ap value: 75.756486791625 - type: cos_sim_f1 value: 70.0162074554295 - type: cos_sim_precision value: 76.14571092831962 - type: cos_sim_recall value: 64.8 - type: dot_accuracy value: 99.47524752475248 - type: dot_ap value: 75.756486791625 - type: dot_f1 value: 70.0162074554295 - type: dot_precision value: 76.14571092831962 - type: dot_recall value: 64.8 - type: euclidean_accuracy value: 99.47524752475248 - type: euclidean_ap value: 75.756486791625 - type: euclidean_f1 value: 70.0162074554295 - type: euclidean_precision value: 76.14571092831962 - type: euclidean_recall value: 64.8 - type: manhattan_accuracy value: 99.53069306930693 - type: manhattan_ap value: 78.93311079752957 - type: manhattan_f1 value: 72.61292166952545 - type: manhattan_precision value: 84.77970627503338 - type: manhattan_recall value: 63.5 - type: max_accuracy value: 99.53069306930693 - type: max_ap value: 78.93311079752957 - type: max_f1 value: 72.61292166952545 - task: type: Clustering dataset: type: None name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 38.956591584917824 - task: type: Clustering dataset: type: None name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 28.829387041051085 - task: type: Reranking dataset: type: None name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 41.618168302388256 - type: mrr value: 42.031210211357276 - task: type: Summarization dataset: type: None name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.716182681356333 - type: cos_sim_spearman value: 28.852160879670087 - type: dot_pearson value: 29.716182648715844 - type: dot_spearman value: 28.951026187665967 - task: type: Retrieval dataset: type: None name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.058 - type: map_at_10 value: 0.445 - type: map_at_100 value: 2.489 - type: map_at_1000 value: 6.3100000000000005 - type: map_at_3 value: 0.16999999999999998 - type: map_at_5 value: 0.254 - type: mrr_at_1 value: 32.0 - type: mrr_at_10 value: 46.016 - type: mrr_at_100 value: 46.683 - type: mrr_at_1000 value: 46.719 - type: mrr_at_3 value: 41.667 - type: mrr_at_5 value: 42.967 - type: ndcg_at_1 value: 26.0 - type: ndcg_at_10 value: 29.885 - type: ndcg_at_100 value: 22.958000000000002 - type: ndcg_at_1000 value: 22.244 - type: ndcg_at_3 value: 29.787999999999997 - type: ndcg_at_5 value: 29.494999999999997 - type: precision_at_1 value: 32.0 - type: precision_at_10 value: 33.800000000000004 - type: precision_at_100 value: 24.52 - type: precision_at_1000 value: 11.196 - type: precision_at_3 value: 35.333 - type: precision_at_5 value: 34.0 - type: recall_at_1 value: 0.058 - type: recall_at_10 value: 0.657 - type: recall_at_100 value: 5.069 - type: recall_at_1000 value: 22.447 - type: recall_at_3 value: 0.2 - type: recall_at_5 value: 0.32299999999999995 - task: type: Retrieval dataset: type: None name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.157 - type: map_at_10 value: 6.787999999999999 - type: map_at_100 value: 9.948 - type: map_at_1000 value: 11.331 - type: map_at_3 value: 4.642 - type: map_at_5 value: 5.718999999999999 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 39.195 - type: mrr_at_100 value: 40.778999999999996 - type: mrr_at_1000 value: 40.797 - type: mrr_at_3 value: 36.394999999999996 - type: mrr_at_5 value: 38.129000000000005 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 17.936 - type: ndcg_at_100 value: 26.552999999999997 - type: ndcg_at_1000 value: 38.318000000000005 - type: ndcg_at_3 value: 24.192 - type: ndcg_at_5 value: 21.732000000000003 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 14.285999999999998 - type: precision_at_100 value: 5.489999999999999 - type: precision_at_1000 value: 1.2710000000000001 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 20.816000000000003 - type: recall_at_1 value: 2.157 - type: recall_at_10 value: 9.729000000000001 - type: recall_at_100 value: 32.688 - type: recall_at_1000 value: 69.123 - type: recall_at_3 value: 5.26 - type: recall_at_5 value: 7.109 - task: type: Classification dataset: type: None name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 67.9134 - type: ap value: 12.774220384041032 - type: f1 value: 52.153059662642434 - task: type: Classification dataset: type: None name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 53.613469156762875 - type: f1 value: 53.786522868566145 - task: type: Clustering dataset: type: None name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 30.747359446594245 - task: type: PairClassification dataset: type: None name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.97806520832091 - type: cos_sim_ap value: 66.35427447671117 - type: cos_sim_f1 value: 63.0426851514046 - type: cos_sim_precision value: 58.47056169636815 - type: cos_sim_recall value: 68.3905013192612 - type: dot_accuracy value: 83.97806520832091 - type: dot_ap value: 66.35427447671117 - type: dot_f1 value: 63.0426851514046 - type: dot_precision value: 58.47056169636815 - type: dot_recall value: 68.3905013192612 - type: euclidean_accuracy value: 83.97806520832091 - type: euclidean_ap value: 66.35427447671117 - type: euclidean_f1 value: 63.0426851514046 - type: euclidean_precision value: 58.47056169636815 - type: euclidean_recall value: 68.3905013192612 - type: manhattan_accuracy value: 83.97210466710378 - type: manhattan_ap value: 65.97618382203181 - type: manhattan_f1 value: 62.53991648243675 - type: manhattan_precision value: 58.501838235294116 - type: manhattan_recall value: 67.17678100263852 - type: max_accuracy value: 83.97806520832091 - type: max_ap value: 66.35427447671117 - type: max_f1 value: 63.0426851514046 - task: type: PairClassification dataset: type: None name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.71362595567975 - type: cos_sim_ap value: 80.86796720185393 - type: cos_sim_f1 value: 73.24097703244622 - type: cos_sim_precision value: 69.5540783824955 - type: cos_sim_recall value: 77.34062211271944 - type: dot_accuracy value: 86.71362595567975 - type: dot_ap value: 80.86797238493406 - type: dot_f1 value: 73.24097703244622 - type: dot_precision value: 69.5540783824955 - type: dot_recall value: 77.34062211271944 - type: euclidean_accuracy value: 86.71362595567975 - type: euclidean_ap value: 80.86796690301992 - type: euclidean_f1 value: 73.24097703244622 - type: euclidean_precision value: 69.5540783824955 - type: euclidean_recall value: 77.34062211271944 - type: manhattan_accuracy value: 86.64376916210657 - type: manhattan_ap value: 80.8520473693602 - type: manhattan_f1 value: 73.15887850467291 - type: manhattan_precision value: 71.10158407208255 - type: manhattan_recall value: 75.33877425315676 - type: max_accuracy value: 86.71362595567975 - type: max_ap value: 80.86797238493406 - type: max_f1 value: 73.24097703244622 ---