DeepRL-LunarLander / config.json
twnatelo's picture
First Version of the LunarLander
876c46d verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c645053b520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c645053b5b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c645053b640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c645053b6d0>", "_build": "<function ActorCriticPolicy._build at 0x7c645053b760>", "forward": "<function ActorCriticPolicy.forward at 0x7c645053b7f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c645053b880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c645053b910>", "_predict": "<function ActorCriticPolicy._predict at 0x7c645053b9a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c645053ba30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c645053bac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c645053bb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c64506e7280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735095421968191890, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3QHTxf734+e9/WPLWmwb7dvQs+aCwAvQAAAAAAAAAA5l3vPfNoCT+eZy285/eevsJ6FD7SH5m8AAAAAAAAAAAa0B+9Cp5yu2P+HzyCHog8z2+sPGDiab0AAIA/AACAP1NsQz49ZYU/CfKTPnTPAL+IdCk+GwXlPQAAAAAAAAAA5rOTPWl9FLyb/WO7BFsePOpXbz1gwAy9AACAPwAAgD9Ky1i+GqeAP4uA6b7sfwi/ctm3vuYnCb4AAAAAAAAAAJqywD1cB026iA5xOsKvgbX7fwq73M+NuQAAAAAAAIA/wFTBvbhu7z76mq09ok2lvvVShL1uWoM9AAAAAAAAAABmFxE9w3ESuvH7obZ3TaavqGnfu9PGwDUAAIA/AACAP82EHz4mhK0+AIXEvhbqjL6+Yoe9tTW/vQAAAAAAAAAA5p5WPcORT7rKtwS8RJCDOdv0S7uKmcO4AACAPwAAgD8zgeK9G2+9Po2+Zz7PXY6+XVrNPSjfajwAAAAAAAAAAJoDdT7LWFU/W+cxPqQowb46LKM+5DQ/vAAAAAAAAAAAZpoKPYUllbtCiaK7ksWHPANA4DwuB2i9AACAPwAAgD8zony93EtHPtINzD35cIK+/nsEPqX5j7wAAAAAAAAAAGb4Az1HI7g/swu6Pb97x77Af8G8HoeCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ0AzpHI6uMAWyUTQoBjAF0lEdAlDCeJk5IYnV9lChoBkdActy/yGzrvGgHTSIBaAhHQJQxa5jH4oJ1fZQoaAZHQHFry+lCTlloB00uAWgIR0CUMdOLBKtgdX2UKGgGR0Bx4b7rLQokaAdNEAFoCEdAlDK2n4wh4nV9lChoBkdAUkqQEIPbwmgHS8FoCEdAlDLaUaAFxHV9lChoBkdAbWf6mfoRqWgHTQgBaAhHQJQzPeVLSNR1fZQoaAZHQHAVbOzIFNdoB0voaAhHQJQzjcRDkU91fZQoaAZHQG5gMdLg4wRoB00fAWgIR0CUNS4QBgeBdX2UKGgGR0BwlpXtBv74aAdL6mgIR0CUNTn+AEt/dX2UKGgGR0Bv5PAfuCwsaAdNBgFoCEdAlDV9Jvo/zXV9lChoBkdAcpi9MsYl6mgHTQkBaAhHQJQ1u3trsSl1fZQoaAZHQHLZ0se4kNZoB00pAWgIR0CUNmxiG34LdX2UKGgGR0ByNMKOT7l8aAdNDQFoCEdAlDaP1g6U7nV9lChoBkdAcsYSr5qM32gHS9hoCEdAlDdQgDA8CHV9lChoBkdAb1dEb5uZTmgHTSIBaAhHQJQ4QTGo73h1fZQoaAZHQG9Q9Qfp2U1oB0vdaAhHQJQ4zKcNH6N1fZQoaAZHQHD8tSIgvDhoB00NAWgIR0CUOOZ0CA+ZdX2UKGgGR0ByxcHfMwDeaAdNJQFoCEdAlDl3EdeY2XV9lChoBkdAcPMeBQN1AGgHTQQBaAhHQJQ5lbor4Fl1fZQoaAZHQHDOFXiiqQ1oB0vyaAhHQJQ6W2PT5O91fZQoaAZHQHEnuBQN0/5oB00TAWgIR0CUOzvHcUM5dX2UKGgGR0BxYNGSZBszaAdNHgFoCEdAlDwTKs+3Y3V9lChoBkdAcUvqgRK6F2gHTTABaAhHQJQ9DdcjZ+R1fZQoaAZHQHHVbutwJgNoB00NAWgIR0CUPYgsbvPUdX2UKGgGR0BwpeWMS9M9aAdNBQFoCEdAlD2O4Cp3o3V9lChoBkdAbmJBxgiNbWgHTSQBaAhHQJQ+PQokRjB1fZQoaAZHQFUNQ2MsH0NoB0u2aAhHQJQ+oHJLdvd1fZQoaAZHQG99LWI42jxoB000AWgIR0CUP1og3cYZdX2UKGgGR0Bx9+CjDbaiaAdNGgFoCEdAlD93QyAQQXV9lChoBkdAcPr6K+BYm2gHTSABaAhHQJQ/gQkHD791fZQoaAZHQGzRUPxx1gZoB0vxaAhHQJQ/05IYm9h1fZQoaAZHQHKLtpyp71JoB00SAWgIR0CUP+9Brvb5dX2UKGgGR0ByTXBl+VkdaAdNCQFoCEdAlEG5MHryD3V9lChoBkdAcEVgRsdkrmgHTSkBaAhHQJRB72IwdsB1fZQoaAZHQG9wQTEit7toB00PAWgIR0CUQsimEXchdX2UKGgGR0BvzLFyaNMoaAdNCwFoCEdAlEOdmYjSonV9lChoBkdAca2j7ALy+mgHTQ0BaAhHQJREpPuXu3N1fZQoaAZHQHHNHo1UEPloB0v3aAhHQJRE2hHskY51fZQoaAZHQG/EVSOzY29oB0v7aAhHQJRFc6+36RB1fZQoaAZHQHFW5YT0xudoB00AAWgIR0CURaJrLyMDdX2UKGgGR0BDzA6EJ0GNaAdL22gIR0CUWtPeHi3odX2UKGgGR0BwdmKAJ9iMaAdNDQFoCEdAlFs7TlT3qXV9lChoBkdAcXQ1iONo8WgHS+FoCEdAlFub349HMHV9lChoBkdAcLGA6+36RGgHS+5oCEdAlFvlZLZi/nV9lChoBkdAcUk+KCQLeGgHTQEBaAhHQJRcGNlyzX11fZQoaAZHQHFNms/6frdoB03BAWgIR0CUXCZuQ6p6dX2UKGgGR0BzOEpjMFEBaAdNJwFoCEdAlFxkBCD28XV9lChoBkdAU7PmuDBdlmgHS7loCEdAlFxxESdvsXV9lChoBkdAcOoplz2ex2gHTUEBaAhHQJRdqtFKCg91fZQoaAZHQHNnGPxQSBdoB00QAWgIR0CUXqGFBY3edX2UKGgGR0BxygPGyX2NaAdNEQFoCEdAlF+4pYs/ZHV9lChoBkdAcBiygwoLHGgHTQUBaAhHQJRgKGqPwNN1fZQoaAZHQFXiYGMXJo1oB0uhaAhHQJRgR+MIeHV1fZQoaAZHQHGC3N9ph4NoB00EAWgIR0CUYQ97WuoxdX2UKGgGR0BwQB22Xsw+aAdNCAFoCEdAlGFlar3j/HV9lChoBkdAcXAPYFqzq2gHS/doCEdAlGFvTG5tnHV9lChoBkdAcy3HSF49o2gHS/loCEdAlGGsn3L3bnV9lChoBkdAcrmmJm/WUmgHTQ0BaAhHQJRi8cQyylh1fZQoaAZHQG/sS1uzhP1oB00AAWgIR0CUY5UZNwirdX2UKGgGR0BwMSM+/xlQaAdL+mgIR0CUY6lmOEM9dX2UKGgGR0BxCaDQJHAiaAdNNQFoCEdAlGSbk8zQ/3V9lChoBkdAcznYV6/qPmgHTSgBaAhHQJRleB5HEuR1fZQoaAZHQHHdhyfcvdxoB00rAWgIR0CUZYG6PKdQdX2UKGgGR0BsnDG1hLGraAdL/mgIR0CUZZmqYJE6dX2UKGgGR0Bwehlg+hXbaAdNPQFoCEdAlGWyLZSNwXV9lChoBkdAb6xcu8K5TmgHTRkBaAhHQJRnY9lmOEN1fZQoaAZHQFRGP4VRDTloB0u7aAhHQJRnaMqBmPJ1fZQoaAZHQG/XjBuXNTtoB0v+aAhHQJRnno+wC8x1fZQoaAZHQG4kAg5imVJoB00LAWgIR0CUaHSMcZLqdX2UKGgGR0Bzhh64UeuFaAdNAAFoCEdAlGk0ZrHlwXV9lChoBkdAcsAYQarFO2gHTRIBaAhHQJRpbjYI0Il1fZQoaAZHQHMqp00WM0hoB00TAWgIR0CUacZydWhidX2UKGgGR0BxUdmQKa5PaAdL8mgIR0CUaxlt0mtydX2UKGgGR0BwRXCAMDwIaAdL+GgIR0CUazubqhUSdX2UKGgGR0By1M1R+BpYaAdNNAFoCEdAlGygdS2phnV9lChoBkdAcShqXWvr4WgHTRkBaAhHQJRtimQ8wHt1fZQoaAZHQHByrUwztTloB0v9aAhHQJRtx3MY/FB1fZQoaAZHQHOFzFdcB2hoB00GAWgIR0CUbdbm2b5NdX2UKGgGR0BxMyOS4e90aAdNGgFoCEdAlG6Za7mMfnV9lChoBkdAccd4M4LkS2gHTScBaAhHQJRvLIMjNY91fZQoaAZHQGyHh9kSVW1oB00CAWgIR0CUcAkIX0oSdX2UKGgGR0BvrOWhRIjGaAdNDAFoCEdAlHBsvduYQnV9lChoBkdAbuGdpZfUnWgHTSIBaAhHQJRxc34sVcl1fZQoaAZHQHJcAhOgxrVoB00EAWgIR0CUcXG6wt8NdX2UKGgGR0Bypwa3qiXZaAdL9mgIR0CUccHAAQxvdX2UKGgGR0BwX5n3+MqCaAdL/GgIR0CUcor4FiazdX2UKGgGR0ByHRQ/HHWCaAdNIAFoCEdAlHNXB1s+FHV9lChoBkdAclhk8Rtgr2gHTQMBaAhHQJR0L2oNutR1fZQoaAZHQG8TJ4SpR41oB0voaAhHQJR0oXSBshx1fZQoaAZHQHDiA7gbZOBoB00dAWgIR0CUdOxCY1HfdX2UKGgGR0BzGFgYxcmjaAdNDwFoCEdAlHbZOBUaQ3V9lChoBkdAcNZRcu8K5WgHTQoBaAhHQJR29rAP/aR1fZQoaAZHQHHNN6kZaV5oB00XAWgIR0CUd12hZha1dX2UKGgGR0ByZB3aBZp0aAdL+2gIR0CUd754GD+SdX2UKGgGR0Bx9++g13t8aAdNEwFoCEdAlHf/bwjMV3V9lChoBkdActwlcQiA2GgHTQcBaAhHQJR48PqcEvF1fZQoaAZHQHJxkfxMFlloB00YAWgIR0CUee2WY4Q0dX2UKGgGR0BsNitFKCg9aAdNAgFoCEdAlHowprk8zXV9lChoBkdAcPzicoYvWmgHTQYBaAhHQJR6rps41gp1fZQoaAZHQHC00pI+W4VoB00TAWgIR0CUesWZJCjUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}