Update handler.py
Browse files- handler.py +17 -3
handler.py
CHANGED
@@ -9,10 +9,24 @@ dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.
|
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
# load the model
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# create inference pipeline
|
15 |
-
self.pipeline = pipeline(
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
18 |
inputs = data.pop("inputs", data)
|
|
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
# load the model
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
path,
|
14 |
+
trust_remote_code=True
|
15 |
+
)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
path,
|
18 |
+
device_map="auto",
|
19 |
+
torch_dtype=dtype,
|
20 |
+
trust_remote_code=True,
|
21 |
+
revision="main"
|
22 |
+
)
|
23 |
# create inference pipeline
|
24 |
+
self.pipeline = pipeline(
|
25 |
+
"text-generation",
|
26 |
+
model=model,
|
27 |
+
tokenizer=tokenizer,
|
28 |
+
trust_remote_code=True
|
29 |
+
)
|
30 |
|
31 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
32 |
inputs = data.pop("inputs", data)
|