File size: 5,082 Bytes
12c956b
 
 
 
 
711476d
 
12c956b
 
 
 
711476d
 
 
 
 
 
 
 
 
 
 
12c956b
 
 
 
 
 
 
 
711476d
12c956b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: other
base_model: Qwen/Qwen1.5-4B
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_hotpot_train8000_eval7405_v1_qa_1e-4_lora2
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
      type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4897142857142857
library_name: peft
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lmind_hotpot_train8000_eval7405_v1_qa_1e-4_lora2

This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1528
- Accuracy: 0.4897

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.2503        | 1.0   | 250   | 2.3237          | 0.5156   |
| 2.087         | 2.0   | 500   | 2.3309          | 0.5164   |
| 1.849         | 3.0   | 750   | 2.4019          | 0.5145   |
| 1.6193        | 4.0   | 1000  | 2.5039          | 0.5104   |
| 1.3666        | 5.0   | 1250  | 2.6544          | 0.5050   |
| 1.1435        | 6.0   | 1500  | 2.8436          | 0.5011   |
| 0.9171        | 7.0   | 1750  | 3.0320          | 0.4971   |
| 0.7531        | 8.0   | 2000  | 3.2585          | 0.4930   |
| 0.6101        | 9.0   | 2250  | 3.3418          | 0.4925   |
| 0.5392        | 10.0  | 2500  | 3.5373          | 0.4916   |
| 0.4718        | 11.0  | 2750  | 3.6313          | 0.4893   |
| 0.4446        | 12.0  | 3000  | 3.6736          | 0.4906   |
| 0.4204        | 13.0  | 3250  | 3.7342          | 0.4906   |
| 0.4131        | 14.0  | 3500  | 3.7778          | 0.4897   |
| 0.3924        | 15.0  | 3750  | 3.8210          | 0.4897   |
| 0.3913        | 16.0  | 4000  | 3.8833          | 0.4904   |
| 0.376         | 17.0  | 4250  | 3.8936          | 0.4898   |
| 0.3785        | 18.0  | 4500  | 3.8824          | 0.49     |
| 0.367         | 19.0  | 4750  | 3.9720          | 0.4901   |
| 0.3676        | 20.0  | 5000  | 3.9374          | 0.4909   |
| 0.3602        | 21.0  | 5250  | 3.9380          | 0.4904   |
| 0.3639        | 22.0  | 5500  | 3.9516          | 0.4910   |
| 0.3533        | 23.0  | 5750  | 4.0207          | 0.4916   |
| 0.3587        | 24.0  | 6000  | 3.9905          | 0.4917   |
| 0.3479        | 25.0  | 6250  | 4.0617          | 0.4915   |
| 0.3511        | 26.0  | 6500  | 4.0106          | 0.4903   |
| 0.3442        | 27.0  | 6750  | 4.0401          | 0.4910   |
| 0.3496        | 28.0  | 7000  | 4.0157          | 0.4897   |
| 0.34          | 29.0  | 7250  | 4.0503          | 0.4902   |
| 0.3448        | 30.0  | 7500  | 4.0786          | 0.4908   |
| 0.3406        | 31.0  | 7750  | 4.1239          | 0.4905   |
| 0.3375        | 32.0  | 8000  | 4.1210          | 0.4915   |
| 0.339         | 33.0  | 8250  | 4.1039          | 0.4898   |
| 0.3418        | 34.0  | 8500  | 4.0879          | 0.4902   |
| 0.3364        | 35.0  | 8750  | 4.0782          | 0.4907   |
| 0.3421        | 36.0  | 9000  | 4.0512          | 0.4910   |
| 0.3337        | 37.0  | 9250  | 4.1727          | 0.4895   |
| 0.3375        | 38.0  | 9500  | 4.1615          | 0.4889   |
| 0.3304        | 39.0  | 9750  | 4.1755          | 0.4899   |
| 0.3341        | 40.0  | 10000 | 4.1542          | 0.4903   |
| 0.3311        | 41.0  | 10250 | 4.1479          | 0.4889   |
| 0.3337        | 42.0  | 10500 | 4.1005          | 0.4907   |
| 0.3284        | 43.0  | 10750 | 4.1688          | 0.4909   |
| 0.3343        | 44.0  | 11000 | 4.1412          | 0.4904   |
| 0.3301        | 45.0  | 11250 | 4.0906          | 0.4917   |
| 0.3307        | 46.0  | 11500 | 4.1221          | 0.4895   |
| 0.328         | 47.0  | 11750 | 4.1250          | 0.4892   |
| 0.3293        | 48.0  | 12000 | 4.1082          | 0.4911   |
| 0.3261        | 49.0  | 12250 | 4.1219          | 0.4903   |
| 0.3279        | 50.0  | 12500 | 4.1528          | 0.4897   |


### Framework versions

- PEFT 0.5.0
- Transformers 4.41.1
- Pytorch 2.1.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1