--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - name: Accuracy type: accuracy value: 0.5813164556962025 --- # lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 2.9420 - Accuracy: 0.5813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8732 | 1.0 | 250 | 2.0111 | 0.5939 | | 1.6142 | 2.0 | 500 | 1.8443 | 0.6051 | | 1.206 | 3.0 | 750 | 1.9818 | 0.6007 | | 0.8693 | 4.0 | 1000 | 2.2100 | 0.5941 | | 0.6023 | 5.0 | 1250 | 2.3756 | 0.5910 | | 0.4717 | 6.0 | 1500 | 2.5421 | 0.5896 | | 0.3938 | 7.0 | 1750 | 2.6587 | 0.5891 | | 0.3697 | 8.0 | 2000 | 2.7532 | 0.5873 | | 0.3617 | 9.0 | 2250 | 2.7664 | 0.5870 | | 0.3607 | 10.0 | 2500 | 2.8514 | 0.5867 | | 0.3414 | 11.0 | 2750 | 2.8932 | 0.5861 | | 0.3439 | 12.0 | 3000 | 2.9545 | 0.5855 | | 0.335 | 13.0 | 3250 | 2.8991 | 0.5843 | | 0.3391 | 14.0 | 3500 | 2.8793 | 0.5840 | | 0.328 | 15.0 | 3750 | 2.8954 | 0.5851 | | 0.3351 | 16.0 | 4000 | 2.9140 | 0.5838 | | 0.3252 | 17.0 | 4250 | 2.9297 | 0.5825 | | 0.332 | 18.0 | 4500 | 2.9812 | 0.5834 | | 0.324 | 19.0 | 4750 | 2.9823 | 0.5808 | | 0.3329 | 20.0 | 5000 | 2.9420 | 0.5813 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1