Model save
Browse files
README.md
CHANGED
@@ -3,23 +3,11 @@ license: other
|
|
3 |
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- tyzhu/lmind_nq_train6000_eval6489_v1_qa
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_lora2
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
name: Causal Language Modeling
|
15 |
-
type: text-generation
|
16 |
-
dataset:
|
17 |
-
name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
|
18 |
-
type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
|
19 |
-
metrics:
|
20 |
-
- name: Accuracy
|
21 |
-
type: accuracy
|
22 |
-
value: 0.5594358974358974
|
23 |
library_name: peft
|
24 |
---
|
25 |
|
@@ -28,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
28 |
|
29 |
# lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_lora2
|
30 |
|
31 |
-
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss: 2.
|
34 |
-
- Accuracy: 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -62,22 +50,32 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: constant
|
64 |
- lr_scheduler_warmup_ratio: 0.05
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
-
| Training Loss | Epoch
|
70 |
-
|
71 |
-
| 1.7657 | 0.9973
|
72 |
-
| 1.497 | 2.0
|
73 |
-
| 1.2345 | 2.9973
|
74 |
-
| 1.0084 | 4.0
|
75 |
-
| 0.8397 | 4.9973
|
76 |
-
| 0.7186 | 6.0
|
77 |
-
| 0.6421 | 6.9973
|
78 |
-
| 0.5968 | 8.0
|
79 |
-
| 0.5417 | 8.9973
|
80 |
-
| 0.5356 | 9.9733
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
3 |
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
- name: lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_lora2
|
10 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
library_name: peft
|
12 |
---
|
13 |
|
|
|
16 |
|
17 |
# lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_lora2
|
18 |
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.4726
|
22 |
+
- Accuracy: 0.5579
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: constant
|
52 |
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 20.0
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
58 |
+
|:-------------:|:-------:|:----:|:--------:|:---------------:|
|
59 |
+
| 1.7657 | 0.9973 | 187 | 0.5738 | 1.6215 |
|
60 |
+
| 1.497 | 2.0 | 375 | 0.5742 | 1.6180 |
|
61 |
+
| 1.2345 | 2.9973 | 562 | 0.5713 | 1.6951 |
|
62 |
+
| 1.0084 | 4.0 | 750 | 0.5659 | 1.8059 |
|
63 |
+
| 0.8397 | 4.9973 | 937 | 0.5647 | 1.9245 |
|
64 |
+
| 0.7186 | 6.0 | 1125 | 0.5614 | 2.0345 |
|
65 |
+
| 0.6421 | 6.9973 | 1312 | 0.5608 | 2.1148 |
|
66 |
+
| 0.5968 | 8.0 | 1500 | 0.5585 | 2.1779 |
|
67 |
+
| 0.5417 | 8.9973 | 1687 | 0.5568 | 2.2654 |
|
68 |
+
| 0.5356 | 9.9733 | 1870 | 0.5594 | 2.2527 |
|
69 |
+
| 0.5261 | 10.9973 | 2057 | 2.3376 | 0.5585 |
|
70 |
+
| 0.5179 | 12.0 | 2245 | 2.3704 | 0.5595 |
|
71 |
+
| 0.5116 | 12.9973 | 2432 | 2.3617 | 0.5589 |
|
72 |
+
| 0.5056 | 14.0 | 2620 | 2.4022 | 0.5581 |
|
73 |
+
| 0.5063 | 14.9973 | 2807 | 2.3861 | 0.5587 |
|
74 |
+
| 0.4796 | 16.0 | 2995 | 2.3658 | 0.5585 |
|
75 |
+
| 0.4757 | 16.9973 | 3182 | 2.4195 | 0.5577 |
|
76 |
+
| 0.4779 | 18.0 | 3370 | 2.4573 | 0.5573 |
|
77 |
+
| 0.4782 | 18.9973 | 3557 | 2.4896 | 0.5589 |
|
78 |
+
| 0.4784 | 19.9733 | 3740 | 2.4726 | 0.5579 |
|
79 |
|
80 |
|
81 |
### Framework versions
|