ubiqtuitin
commited on
Commit
·
9a0dd89
1
Parent(s):
0740db9
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -205.33 +/- 79.29
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cd48b8170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cd48b8200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cd48b8290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cd48b8320>", "_build": "<function ActorCriticPolicy._build at 0x7f8cd48b83b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8cd48b8440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cd48b84d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8cd48b8560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cd48b85f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cd48b8680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cd48b8710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8cd488c450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654525753.3935812, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAM6qEPT0kBz9k4Ss+7mGBv/q7L7utlWW8AAAAAAAAAACAU2O9X8E3P4pZT77OxJq/J2vdPRX7WT4AAAAAAAAAADNkn7wf+68/fFsrvwywCb+v+s4841kwPgAAAAAAAAAAiJ2ivjhXFD8uz1G/S2Wjv3zfpT/xlxg/AAAAAAAAAADNXam8oYiVP7uZ5L2D7Ci/RxIDPy7Tkz4AAAAAAAAAAFrPFT7eK7I/b+WqPia7rL7TLQS+CjKkPQAAAAAAAAAAzcz/uF1rsz/Zxkq83HzRvkNlGzlKujc7AAAAAAAAAADNQmc+9NHJPj66mT4p5JW/sQcQPtDqnz0AAAAAAAAAABGJf78oY48+9n/cv4cBnr8dsmk/ojiKPgAAAAAAAAAAM2+iu6SonT+5CCS8g2cGvzrj3r36+rS9AAAAAAAAAABm3Ac8Lle4P2FNRz7gNZI+ituiOXINVj0AAAAAAAAAACaVI76/n1M/DyLAvq6bXb+QrAY9pwxFPQAAAAAAAAAA5hKCvq/Gfz8w0Tm/WVM2vzXq5TsuWo69AAAAAAAAAADCw6O+t9oXPyP8pL7X+Ym/bjoWvobWEr4AAAAAAAAAALMMAT0z4ZQ/khCbO4ZWGr/GKWE+xEbDPQAAAAAAAAAAwAioPXRwqD9wosQ+xjy4vjwkX76m4HS+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAEAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOE4K8x5XTcCUhpRSlIwBbJRLSYwBdJRHQDm8/zJ6po91fZQoaAZoCWgPQwhZTkLpC3dTwJSGlFKUaBVLRmgWR0A5vPZ7HAARdX2UKGgGaAloD0MIXqJ6a2AyWsCUhpRSlGgVS1ZoFkdAOcAMx46fa3V9lChoBmgJaA9DCOeoo+NqpG3AlIaUUpRoFUtiaBZHQDm/LdN34bl1fZQoaAZoCWgPQwjKplzh3aNqwJSGlFKUaBVLUGgWR0A51qynk1dgdX2UKGgGaAloD0MIs82N6YmBYsCUhpRSlGgVS1VoFkdAOdu1ndweeXV9lChoBmgJaA9DCFAYlGl0unbAlIaUUpRoFUt/aBZHQDnguRLbpNd1fZQoaAZoCWgPQwiR7Xw/NTx7wJSGlFKUaBVLY2gWR0A543Hq/ub7dX2UKGgGaAloD0MIqTC2EOQkVsCUhpRSlGgVS1NoFkdAOenzYmLLp3V9lChoBmgJaA9DCB7BjZQt0gnAlIaUUpRoFUt3aBZHQDnuO5rgwXZ1fZQoaAZoCWgPQwgKvmn6bEpnwJSGlFKUaBVLRGgWR0A5/bEP1+RYdX2UKGgGaAloD0MIOnR63g2oZcCUhpRSlGgVS1JoFkdAOgWAbyYoiXV9lChoBmgJaA9DCF392CQ/5VPAlIaUUpRoFUtNaBZHQDoFZ5iVjZt1fZQoaAZoCWgPQwgWaHdIMegnwJSGlFKUaBVLYWgWR0A6CtBv73wkdX2UKGgGaAloD0MIb7n6sQk7eMCUhpRSlGgVS2xoFkdAOhGjwhGH6HV9lChoBmgJaA9DCJPjTulgwVPAlIaUUpRoFUtxaBZHQDob08NhE0B1fZQoaAZoCWgPQwi5/fLJCntiwJSGlFKUaBVLQ2gWR0A6Ih6By0a7dX2UKGgGaAloD0MIpgwc0BIvcMCUhpRSlGgVS3VoFkdAOiXhGYrrgXV9lChoBmgJaA9DCP60UZ2OdWXAlIaUUpRoFUt0aBZHQDonqlgtvn91fZQoaAZoCWgPQwjQuHAgJG9jwJSGlFKUaBVLc2gWR0A6KTjNpudgdX2UKGgGaAloD0MIe/Xx0PdQc8CUhpRSlGgVS1VoFkdAOi2rXDm8unV9lChoBmgJaA9DCJ1LcVWZ53XAlIaUUpRoFUt7aBZHQDoxA/s3Q2N1fZQoaAZoCWgPQwjdXtIYrTthwJSGlFKUaBVLUWgWR0A6L3IdU83ddX2UKGgGaAloD0MI2q7QB8sXXcCUhpRSlGgVS1ZoFkdAOjvQF9roGXV9lChoBmgJaA9DCOJ0kq2urG7AlIaUUpRoFUtVaBZHQDo/KYAsCkp1fZQoaAZoCWgPQwip29lXHrhYwJSGlFKUaBVLc2gWR0A6Q6lLvkR0dX2UKGgGaAloD0MInGuYofH5ZMCUhpRSlGgVS1hoFkdAOle14Pf8/HV9lChoBmgJaA9DCIDTu3g/S3nAlIaUUpRoFUtUaBZHQDpZJpWV/tp1fZQoaAZoCWgPQwgCLsiW5bVgwJSGlFKUaBVLY2gWR0A6WsByS3b3dX2UKGgGaAloD0MIv7Z++s9sZcCUhpRSlGgVSzpoFkdAOmFd5Y5ksnV9lChoBmgJaA9DCI0ngjgP1WLAlIaUUpRoFUtEaBZHQDpk/GEPDpF1fZQoaAZoCWgPQwj19BH4Q3lrwJSGlFKUaBVLQWgWR0A6aWbwz+FUdX2UKGgGaAloD0MIsI9OXblzcMCUhpRSlGgVS2NoFkdAOm4egctGu3V9lChoBmgJaA9DCBPwayQJ9mzAlIaUUpRoFUtwaBZHQDpuB7NSqER1fZQoaAZoCWgPQwjWOnE5XsJxwJSGlFKUaBVLW2gWR0A6cQ0GeMAFdX2UKGgGaAloD0MIS3ZsBOK7UcCUhpRSlGgVS1xoFkdAOnmm1pj+aXV9lChoBmgJaA9DCI9U3/lFYVbAlIaUUpRoFUtjaBZHQDqAHY6GQCF1fZQoaAZoCWgPQwgFxCRcyGhQwJSGlFKUaBVLRGgWR0A6g5byH2ytdX2UKGgGaAloD0MI6V+SyhTZeMCUhpRSlGgVS2doFkdAOog8W9DhL3V9lChoBmgJaA9DCH089N2tfVjAlIaUUpRoFUtRaBZHQDqKw0O3DvV1fZQoaAZoCWgPQwjyecVTD6ZhwJSGlFKUaBVLZGgWR0A6jTQmeDnOdX2UKGgGaAloD0MIaXIxBtZTZcCUhpRSlGgVS1ZoFkdAOoxCD28IzHV9lChoBmgJaA9DCPomTYOiwnvAlIaUUpRoFUtVaBZHQDqmkdmxt551fZQoaAZoCWgPQwjLFHMQNG55wJSGlFKUaBVLUmgWR0A6pqJdjXnRdX2UKGgGaAloD0MIIehoVUtYVsCUhpRSlGgVS0RoFkdAOq00SAYpD3V9lChoBmgJaA9DCHyakxeZAVDAlIaUUpRoFUtEaBZHQDqtQLux8lZ1fZQoaAZoCWgPQwjfbkkO2ApmwJSGlFKUaBVLYWgWR0A6s3pwCKaYdX2UKGgGaAloD0MIbTzYYreVQMCUhpRSlGgVS1FoFkdAOrTTBqKxcHV9lChoBmgJaA9DCFxXzAjv/2XAlIaUUpRoFUtAaBZHQDrCzAvcrRV1fZQoaAZoCWgPQwgQkgVMIBJxwJSGlFKUaBVLaWgWR0A6xv9tMwlCdX2UKGgGaAloD0MIG/LPDOIcWMCUhpRSlGgVS1ZoFkdAOspvgm7aqXV9lChoBmgJaA9DCDCeQUN/qnvAlIaUUpRoFUtTaBZHQDrMbIcR15l1fZQoaAZoCWgPQwixFwrYjm1vwJSGlFKUaBVLc2gWR0A6zWhAWznidX2UKGgGaAloD0MI4443+S0rY8CUhpRSlGgVS1hoFkdAOtRwdbPhQ3V9lChoBmgJaA9DCK1qSUe56mjAlIaUUpRoFUtSaBZHQDrXQyAQQMB1fZQoaAZoCWgPQwhjtI6qJugAQJSGlFKUaBVLcGgWR0A62bwSamXPdX2UKGgGaAloD0MIDaX2ItqwRsCUhpRSlGgVS19oFkdAOuGlqJuVHHV9lChoBmgJaA9DCHb7rDJTQlPAlIaUUpRoFUs8aBZHQDrluIhyKel1fZQoaAZoCWgPQwisN2qF6QtVwJSGlFKUaBVLPWgWR0A65khib2DhdX2UKGgGaAloD0MIlN43vnbVbsCUhpRSlGgVS3doFkdAOvnn6l+Ey3V9lChoBmgJaA9DCM/4vrhUDS/AlIaUUpRoFUtVaBZHQDsDPldTo+x1fZQoaAZoCWgPQwiu1LMglIFWwJSGlFKUaBVLWmgWR0A7GLEUCaJAdX2UKGgGaAloD0MIHcpQFVOvVsCUhpRSlGgVS09oFkdAOxi2phnanXV9lChoBmgJaA9DCO0pOSe2CHfAlIaUUpRoFUtYaBZHQDsgY1pCa7V1fZQoaAZoCWgPQwgZxt0gWkBlwJSGlFKUaBVLg2gWR0A7I8bJfYz0dX2UKGgGaAloD0MIT3l0I6zGasCUhpRSlGgVS1FoFkdAOyfNqxkd3nV9lChoBmgJaA9DCBuADYgQfGPAlIaUUpRoFUthaBZHQDsnbmEGqxV1fZQoaAZoCWgPQwiVY7K4f6FiwJSGlFKUaBVLSGgWR0A7K6cRUWEcdX2UKGgGaAloD0MIclDCTNtUcMCUhpRSlGgVS1ZoFkdAOyqJ2t+1B3V9lChoBmgJaA9DCFqfckwWz2fAlIaUUpRoFUuNaBZHQDstmDlHSWt1fZQoaAZoCWgPQwgjhEcbx8hiwJSGlFKUaBVLXmgWR0A7LwAlv60qdX2UKGgGaAloD0MIwVjfwORcZcCUhpRSlGgVS39oFkdAOy62v0RODnV9lChoBmgJaA9DCJscPumEoHLAlIaUUpRoFUtzaBZHQDs1Cpm29ct1fZQoaAZoCWgPQwhyUS0iypxwwJSGlFKUaBVLXWgWR0A7P6V+qioLdX2UKGgGaAloD0MILsvXZfhTY8CUhpRSlGgVS2toFkdAO0g+Y+jdpXV9lChoBmgJaA9DCN2zrtFyzlnAlIaUUpRoFUs9aBZHQDtR64UeuFJ1fZQoaAZoCWgPQwgRVmMJ6wFwwJSGlFKUaBVLRmgWR0A7ad6cAimmdX2UKGgGaAloD0MITaCIRQwlVsCUhpRSlGgVS3ZoFkdAO20sSTQmeHV9lChoBmgJaA9DCNYdi23SQmHAlIaUUpRoFUtAaBZHQDtrxmTTvy91fZQoaAZoCWgPQwjfMqfLYotawJSGlFKUaBVLR2gWR0A7dLtu1ndwdX2UKGgGaAloD0MIvM/x0eK6U8CUhpRSlGgVS1xoFkdAO3WLYPGyX3V9lChoBmgJaA9DCGdiuhDrJ3fAlIaUUpRoFUt0aBZHQDt4m6XjU/h1fZQoaAZoCWgPQwh1WrdB7SJYwJSGlFKUaBVLSGgWR0A7hTPSlWOqdX2UKGgGaAloD0MIUkSGVbwJccCUhpRSlGgVS1poFkdAO4rtu1ndwnV9lChoBmgJaA9DCL1UbMzr+lrAlIaUUpRoFUthaBZHQDuaF7D2rXF1fZQoaAZoCWgPQwjnGJC9Hk9wwJSGlFKUaBVLbmgWR0A7nplBhQWOdX2UKGgGaAloD0MI9L9ci5YPdMCUhpRSlGgVS3VoFkdAO7lvQ4S6D3V9lChoBmgJaA9DCA73kVuTPE3AlIaUUpRoFUt0aBZHQDvAILPUrkN1fZQoaAZoCWgPQwhCrz+Jz5hrwJSGlFKUaBVLWWgWR0A7wmmce8wpdX2UKGgGaAloD0MIyqZc4V2sXcCUhpRSlGgVS4NoFkdAO8b61stTUHV9lChoBmgJaA9DCJbLRuf81mbAlIaUUpRoFUs9aBZHQDvasvIwM6R1fZQoaAZoCWgPQwhGmngHeE5WwJSGlFKUaBVLQ2gWR0A73SxJNCZ4dX2UKGgGaAloD0MI0LUvoJeBYcCUhpRSlGgVS3FoFkdAO92KZUkv9XV9lChoBmgJaA9DCOgxyjOvv2XAlIaUUpRoFUtdaBZHQDvdn5BTn7p1fZQoaAZoCWgPQwh3SZwVUdpQwJSGlFKUaBVLRGgWR0A76TZQHiWFdX2UKGgGaAloD0MI53Pudr2qa8CUhpRSlGgVS1RoFkdAO/Xz+WGATnV9lChoBmgJaA9DCEgXm1YKFlLAlIaUUpRoFUtIaBZHQDwBzNliBoV1fZQoaAZoCWgPQwhrup7oupVvwJSGlFKUaBVLaWgWR0A8Feg+QlrudX2UKGgGaAloD0MIRSv3AjMUdcCUhpRSlGgVS2NoFkdAPBjoMa0hNnV9lChoBmgJaA9DCL8MxojEHGLAlIaUUpRoFUs8aBZHQDwc/B3zMA51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e36c8104ff02023e36226c7780b55bed5801bca75b16e5dd4759f95378a82d17
|
3 |
+
size 144005
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cd48b8170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cd48b8200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cd48b8290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cd48b8320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8cd48b83b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8cd48b8440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cd48b84d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8cd48b8560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cd48b85f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cd48b8680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cd48b8710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8cd488c450>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 5000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1654525753.3935812,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAM6qEPT0kBz9k4Ss+7mGBv/q7L7utlWW8AAAAAAAAAACAU2O9X8E3P4pZT77OxJq/J2vdPRX7WT4AAAAAAAAAADNkn7wf+68/fFsrvwywCb+v+s4841kwPgAAAAAAAAAAiJ2ivjhXFD8uz1G/S2Wjv3zfpT/xlxg/AAAAAAAAAADNXam8oYiVP7uZ5L2D7Ci/RxIDPy7Tkz4AAAAAAAAAAFrPFT7eK7I/b+WqPia7rL7TLQS+CjKkPQAAAAAAAAAAzcz/uF1rsz/Zxkq83HzRvkNlGzlKujc7AAAAAAAAAADNQmc+9NHJPj66mT4p5JW/sQcQPtDqnz0AAAAAAAAAABGJf78oY48+9n/cv4cBnr8dsmk/ojiKPgAAAAAAAAAAM2+iu6SonT+5CCS8g2cGvzrj3r36+rS9AAAAAAAAAABm3Ac8Lle4P2FNRz7gNZI+ituiOXINVj0AAAAAAAAAACaVI76/n1M/DyLAvq6bXb+QrAY9pwxFPQAAAAAAAAAA5hKCvq/Gfz8w0Tm/WVM2vzXq5TsuWo69AAAAAAAAAADCw6O+t9oXPyP8pL7X+Ym/bjoWvobWEr4AAAAAAAAAALMMAT0z4ZQ/khCbO4ZWGr/GKWE+xEbDPQAAAAAAAAAAwAioPXRwqD9wosQ+xjy4vjwkX76m4HS+AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAEAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -2.2768,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOE4K8x5XTcCUhpRSlIwBbJRLSYwBdJRHQDm8/zJ6po91fZQoaAZoCWgPQwhZTkLpC3dTwJSGlFKUaBVLRmgWR0A5vPZ7HAARdX2UKGgGaAloD0MIXqJ6a2AyWsCUhpRSlGgVS1ZoFkdAOcAMx46fa3V9lChoBmgJaA9DCOeoo+NqpG3AlIaUUpRoFUtiaBZHQDm/LdN34bl1fZQoaAZoCWgPQwjKplzh3aNqwJSGlFKUaBVLUGgWR0A51qynk1dgdX2UKGgGaAloD0MIs82N6YmBYsCUhpRSlGgVS1VoFkdAOdu1ndweeXV9lChoBmgJaA9DCFAYlGl0unbAlIaUUpRoFUt/aBZHQDnguRLbpNd1fZQoaAZoCWgPQwiR7Xw/NTx7wJSGlFKUaBVLY2gWR0A543Hq/ub7dX2UKGgGaAloD0MIqTC2EOQkVsCUhpRSlGgVS1NoFkdAOenzYmLLp3V9lChoBmgJaA9DCB7BjZQt0gnAlIaUUpRoFUt3aBZHQDnuO5rgwXZ1fZQoaAZoCWgPQwgKvmn6bEpnwJSGlFKUaBVLRGgWR0A5/bEP1+RYdX2UKGgGaAloD0MIOnR63g2oZcCUhpRSlGgVS1JoFkdAOgWAbyYoiXV9lChoBmgJaA9DCF392CQ/5VPAlIaUUpRoFUtNaBZHQDoFZ5iVjZt1fZQoaAZoCWgPQwgWaHdIMegnwJSGlFKUaBVLYWgWR0A6CtBv73wkdX2UKGgGaAloD0MIb7n6sQk7eMCUhpRSlGgVS2xoFkdAOhGjwhGH6HV9lChoBmgJaA9DCJPjTulgwVPAlIaUUpRoFUtxaBZHQDob08NhE0B1fZQoaAZoCWgPQwi5/fLJCntiwJSGlFKUaBVLQ2gWR0A6Ih6By0a7dX2UKGgGaAloD0MIpgwc0BIvcMCUhpRSlGgVS3VoFkdAOiXhGYrrgXV9lChoBmgJaA9DCP60UZ2OdWXAlIaUUpRoFUt0aBZHQDonqlgtvn91fZQoaAZoCWgPQwjQuHAgJG9jwJSGlFKUaBVLc2gWR0A6KTjNpudgdX2UKGgGaAloD0MIe/Xx0PdQc8CUhpRSlGgVS1VoFkdAOi2rXDm8unV9lChoBmgJaA9DCJ1LcVWZ53XAlIaUUpRoFUt7aBZHQDoxA/s3Q2N1fZQoaAZoCWgPQwjdXtIYrTthwJSGlFKUaBVLUWgWR0A6L3IdU83ddX2UKGgGaAloD0MI2q7QB8sXXcCUhpRSlGgVS1ZoFkdAOjvQF9roGXV9lChoBmgJaA9DCOJ0kq2urG7AlIaUUpRoFUtVaBZHQDo/KYAsCkp1fZQoaAZoCWgPQwip29lXHrhYwJSGlFKUaBVLc2gWR0A6Q6lLvkR0dX2UKGgGaAloD0MInGuYofH5ZMCUhpRSlGgVS1hoFkdAOle14Pf8/HV9lChoBmgJaA9DCIDTu3g/S3nAlIaUUpRoFUtUaBZHQDpZJpWV/tp1fZQoaAZoCWgPQwgCLsiW5bVgwJSGlFKUaBVLY2gWR0A6WsByS3b3dX2UKGgGaAloD0MIv7Z++s9sZcCUhpRSlGgVSzpoFkdAOmFd5Y5ksnV9lChoBmgJaA9DCI0ngjgP1WLAlIaUUpRoFUtEaBZHQDpk/GEPDpF1fZQoaAZoCWgPQwj19BH4Q3lrwJSGlFKUaBVLQWgWR0A6aWbwz+FUdX2UKGgGaAloD0MIsI9OXblzcMCUhpRSlGgVS2NoFkdAOm4egctGu3V9lChoBmgJaA9DCBPwayQJ9mzAlIaUUpRoFUtwaBZHQDpuB7NSqER1fZQoaAZoCWgPQwjWOnE5XsJxwJSGlFKUaBVLW2gWR0A6cQ0GeMAFdX2UKGgGaAloD0MIS3ZsBOK7UcCUhpRSlGgVS1xoFkdAOnmm1pj+aXV9lChoBmgJaA9DCI9U3/lFYVbAlIaUUpRoFUtjaBZHQDqAHY6GQCF1fZQoaAZoCWgPQwgFxCRcyGhQwJSGlFKUaBVLRGgWR0A6g5byH2ytdX2UKGgGaAloD0MI6V+SyhTZeMCUhpRSlGgVS2doFkdAOog8W9DhL3V9lChoBmgJaA9DCH089N2tfVjAlIaUUpRoFUtRaBZHQDqKw0O3DvV1fZQoaAZoCWgPQwjyecVTD6ZhwJSGlFKUaBVLZGgWR0A6jTQmeDnOdX2UKGgGaAloD0MIaXIxBtZTZcCUhpRSlGgVS1ZoFkdAOoxCD28IzHV9lChoBmgJaA9DCPomTYOiwnvAlIaUUpRoFUtVaBZHQDqmkdmxt551fZQoaAZoCWgPQwjLFHMQNG55wJSGlFKUaBVLUmgWR0A6pqJdjXnRdX2UKGgGaAloD0MIIehoVUtYVsCUhpRSlGgVS0RoFkdAOq00SAYpD3V9lChoBmgJaA9DCHyakxeZAVDAlIaUUpRoFUtEaBZHQDqtQLux8lZ1fZQoaAZoCWgPQwjfbkkO2ApmwJSGlFKUaBVLYWgWR0A6s3pwCKaYdX2UKGgGaAloD0MIbTzYYreVQMCUhpRSlGgVS1FoFkdAOrTTBqKxcHV9lChoBmgJaA9DCFxXzAjv/2XAlIaUUpRoFUtAaBZHQDrCzAvcrRV1fZQoaAZoCWgPQwgQkgVMIBJxwJSGlFKUaBVLaWgWR0A6xv9tMwlCdX2UKGgGaAloD0MIG/LPDOIcWMCUhpRSlGgVS1ZoFkdAOspvgm7aqXV9lChoBmgJaA9DCDCeQUN/qnvAlIaUUpRoFUtTaBZHQDrMbIcR15l1fZQoaAZoCWgPQwixFwrYjm1vwJSGlFKUaBVLc2gWR0A6zWhAWznidX2UKGgGaAloD0MI4443+S0rY8CUhpRSlGgVS1hoFkdAOtRwdbPhQ3V9lChoBmgJaA9DCK1qSUe56mjAlIaUUpRoFUtSaBZHQDrXQyAQQMB1fZQoaAZoCWgPQwhjtI6qJugAQJSGlFKUaBVLcGgWR0A62bwSamXPdX2UKGgGaAloD0MIDaX2ItqwRsCUhpRSlGgVS19oFkdAOuGlqJuVHHV9lChoBmgJaA9DCHb7rDJTQlPAlIaUUpRoFUs8aBZHQDrluIhyKel1fZQoaAZoCWgPQwisN2qF6QtVwJSGlFKUaBVLPWgWR0A65khib2DhdX2UKGgGaAloD0MIlN43vnbVbsCUhpRSlGgVS3doFkdAOvnn6l+Ey3V9lChoBmgJaA9DCM/4vrhUDS/AlIaUUpRoFUtVaBZHQDsDPldTo+x1fZQoaAZoCWgPQwiu1LMglIFWwJSGlFKUaBVLWmgWR0A7GLEUCaJAdX2UKGgGaAloD0MIHcpQFVOvVsCUhpRSlGgVS09oFkdAOxi2phnanXV9lChoBmgJaA9DCO0pOSe2CHfAlIaUUpRoFUtYaBZHQDsgY1pCa7V1fZQoaAZoCWgPQwgZxt0gWkBlwJSGlFKUaBVLg2gWR0A7I8bJfYz0dX2UKGgGaAloD0MIT3l0I6zGasCUhpRSlGgVS1FoFkdAOyfNqxkd3nV9lChoBmgJaA9DCBuADYgQfGPAlIaUUpRoFUthaBZHQDsnbmEGqxV1fZQoaAZoCWgPQwiVY7K4f6FiwJSGlFKUaBVLSGgWR0A7K6cRUWEcdX2UKGgGaAloD0MIclDCTNtUcMCUhpRSlGgVS1ZoFkdAOyqJ2t+1B3V9lChoBmgJaA9DCFqfckwWz2fAlIaUUpRoFUuNaBZHQDstmDlHSWt1fZQoaAZoCWgPQwgjhEcbx8hiwJSGlFKUaBVLXmgWR0A7LwAlv60qdX2UKGgGaAloD0MIwVjfwORcZcCUhpRSlGgVS39oFkdAOy62v0RODnV9lChoBmgJaA9DCJscPumEoHLAlIaUUpRoFUtzaBZHQDs1Cpm29ct1fZQoaAZoCWgPQwhyUS0iypxwwJSGlFKUaBVLXWgWR0A7P6V+qioLdX2UKGgGaAloD0MILsvXZfhTY8CUhpRSlGgVS2toFkdAO0g+Y+jdpXV9lChoBmgJaA9DCN2zrtFyzlnAlIaUUpRoFUs9aBZHQDtR64UeuFJ1fZQoaAZoCWgPQwgRVmMJ6wFwwJSGlFKUaBVLRmgWR0A7ad6cAimmdX2UKGgGaAloD0MITaCIRQwlVsCUhpRSlGgVS3ZoFkdAO20sSTQmeHV9lChoBmgJaA9DCNYdi23SQmHAlIaUUpRoFUtAaBZHQDtrxmTTvy91fZQoaAZoCWgPQwjfMqfLYotawJSGlFKUaBVLR2gWR0A7dLtu1ndwdX2UKGgGaAloD0MIvM/x0eK6U8CUhpRSlGgVS1xoFkdAO3WLYPGyX3V9lChoBmgJaA9DCGdiuhDrJ3fAlIaUUpRoFUt0aBZHQDt4m6XjU/h1fZQoaAZoCWgPQwh1WrdB7SJYwJSGlFKUaBVLSGgWR0A7hTPSlWOqdX2UKGgGaAloD0MIUkSGVbwJccCUhpRSlGgVS1poFkdAO4rtu1ndwnV9lChoBmgJaA9DCL1UbMzr+lrAlIaUUpRoFUthaBZHQDuaF7D2rXF1fZQoaAZoCWgPQwjnGJC9Hk9wwJSGlFKUaBVLbmgWR0A7nplBhQWOdX2UKGgGaAloD0MI9L9ci5YPdMCUhpRSlGgVS3VoFkdAO7lvQ4S6D3V9lChoBmgJaA9DCA73kVuTPE3AlIaUUpRoFUt0aBZHQDvAILPUrkN1fZQoaAZoCWgPQwhCrz+Jz5hrwJSGlFKUaBVLWWgWR0A7wmmce8wpdX2UKGgGaAloD0MIyqZc4V2sXcCUhpRSlGgVS4NoFkdAO8b61stTUHV9lChoBmgJaA9DCJbLRuf81mbAlIaUUpRoFUs9aBZHQDvasvIwM6R1fZQoaAZoCWgPQwhGmngHeE5WwJSGlFKUaBVLQ2gWR0A73SxJNCZ4dX2UKGgGaAloD0MI0LUvoJeBYcCUhpRSlGgVS3FoFkdAO92KZUkv9XV9lChoBmgJaA9DCOgxyjOvv2XAlIaUUpRoFUtdaBZHQDvdn5BTn7p1fZQoaAZoCWgPQwh3SZwVUdpQwJSGlFKUaBVLRGgWR0A76TZQHiWFdX2UKGgGaAloD0MI53Pudr2qa8CUhpRSlGgVS1RoFkdAO/Xz+WGATnV9lChoBmgJaA9DCEgXm1YKFlLAlIaUUpRoFUtIaBZHQDwBzNliBoV1fZQoaAZoCWgPQwhrup7oupVvwJSGlFKUaBVLaWgWR0A8Feg+QlrudX2UKGgGaAloD0MIRSv3AjMUdcCUhpRSlGgVS2NoFkdAPBjoMa0hNnV9lChoBmgJaA9DCL8MxojEHGLAlIaUUpRoFUs8aBZHQDwc/B3zMA51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 4,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8d5abd9d746efe115c82d38bfc6107f8098677c53fe2f11d11c968481b84486
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2101f87e98eea81089345c020621d6508549f0b20f241744a7dca796cca79c2f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5585f71f94ceba0c6e7775de79469daebb0c0679474a917281213f3047f372e2
|
3 |
+
size 227795
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -205.33146220191847, "std_reward": 79.28897577456928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-06T14:30:13.858600"}
|