uboza10300 commited on
Commit
0ca1256
1 Parent(s): 0aa7a6c

End of training

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - hatexplain
9
+ metrics:
10
+ - accuracy
11
+ - precision
12
+ - recall
13
+ - f1
14
+ model-index:
15
+ - name: distilbert-hatexplain
16
+ results:
17
+ - task:
18
+ name: Text Classification
19
+ type: text-classification
20
+ dataset:
21
+ name: hatexplain
22
+ type: hatexplain
23
+ config: plain_text
24
+ split: validation
25
+ args: plain_text
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.6990644490644491
30
+ - name: Precision
31
+ type: precision
32
+ value: 0.6974890380019948
33
+ - name: Recall
34
+ type: recall
35
+ value: 0.6990644490644491
36
+ - name: F1
37
+ type: f1
38
+ value: 0.6978790945993021
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # distilbert-hatexplain
45
+
46
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the hatexplain dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.8165
49
+ - Accuracy: 0.6991
50
+ - Precision: 0.6975
51
+ - Recall: 0.6991
52
+ - F1: 0.6979
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 8
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 3
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
82
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
83
+ | 0.6131 | 1.0 | 1923 | 0.7399 | 0.6925 | 0.6877 | 0.6925 | 0.6847 |
84
+ | 0.7386 | 2.0 | 3846 | 0.7254 | 0.7040 | 0.7033 | 0.7040 | 0.7036 |
85
+ | 0.6471 | 3.0 | 5769 | 0.8259 | 0.7019 | 0.6995 | 0.7019 | 0.7005 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.47.0
91
+ - Pytorch 2.5.1+cu118
92
+ - Datasets 3.1.0
93
+ - Tokenizers 0.21.0