--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - hatexplain metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-hatexplain results: - task: name: Text Classification type: text-classification dataset: name: hatexplain type: hatexplain config: plain_text split: validation args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6990644490644491 - name: Precision type: precision value: 0.6974890380019948 - name: Recall type: recall value: 0.6990644490644491 - name: F1 type: f1 value: 0.6978790945993021 --- # distilbert-hatexplain This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the hatexplain dataset. It achieves the following results on the evaluation set: - Loss: 0.8165 - Accuracy: 0.6991 - Precision: 0.6975 - Recall: 0.6991 - F1: 0.6979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6131 | 1.0 | 1923 | 0.7399 | 0.6925 | 0.6877 | 0.6925 | 0.6847 | | 0.7386 | 2.0 | 3846 | 0.7254 | 0.7040 | 0.7033 | 0.7040 | 0.7036 | | 0.6471 | 3.0 | 5769 | 0.8259 | 0.7019 | 0.6995 | 0.7019 | 0.7005 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0