--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - hatexplain metrics: - accuracy - precision - recall - f1 model-index: - name: finetuned-distilbert-hatexplainV2 results: - task: name: Text Classification type: text-classification dataset: name: hatexplain type: hatexplain config: plain_text split: validation args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6845114345114345 - name: Precision type: precision value: 0.6875552661807551 - name: Recall type: recall value: 0.6845114345114345 - name: F1 type: f1 value: 0.6848681152421926 --- # finetuned-distilbert-hatexplainV2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the hatexplain dataset. It achieves the following results on the evaluation set: - Loss: 1.1306 - Accuracy: 0.6845 - Precision: 0.6876 - Recall: 0.6845 - F1: 0.6849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.723 | 1.0 | 962 | 0.7320 | 0.6826 | 0.6766 | 0.6826 | 0.6703 | | 0.6337 | 2.0 | 1924 | 0.7344 | 0.6857 | 0.6847 | 0.6857 | 0.6852 | | 0.3821 | 3.0 | 2886 | 0.9051 | 0.6722 | 0.6885 | 0.6722 | 0.6759 | | 0.1811 | 4.0 | 3848 | 1.1789 | 0.6743 | 0.6787 | 0.6743 | 0.6759 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0