dslack nazneen commited on
Commit
ecddbd2
·
1 Parent(s): f6de450

model documentation (#2)

Browse files

- model documentation (c3964b970c17d3b6dc8ef71f05aa0e01c571ad92)


Co-authored-by: Nazneen Rajani <[email protected]>

Files changed (1) hide show
  1. README.md +180 -0
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ tags:
4
+ - t5
5
+
6
+ ---
7
+ # Model Card for diabetes-t5-small
8
+
9
+
10
+ # Model Details
11
+
12
+ ## Model Description
13
+
14
+ - **Developed by:** UCI NLP
15
+ - **Shared by [Optional]:** More information needed
16
+ - **Model type:** Text2Text Generation
17
+ - **Language(s) (NLP):** More information needed
18
+ - **License:** More information needed
19
+ - **Related Models:** T5-small
20
+ - **Parent Model:** T5
21
+ - **Resources for more information:**
22
+ - [Associated Paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
23
+ - [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
24
+ - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer)
25
+ - [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5)
26
+
27
+
28
+
29
+ # Uses
30
+
31
+
32
+ ## Direct Use
33
+
34
+ This model can be used for the task of Text2Text Generation
35
+
36
+ ## Downstream Use [Optional]
37
+
38
+ More information needed
39
+
40
+ ## Out-of-Scope Use
41
+
42
+ The model should not be used to intentionally create hostile or alienating environments for people.
43
+
44
+ # Bias, Risks, and Limitations
45
+
46
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
47
+
48
+
49
+ ## Recommendations
50
+
51
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
52
+
53
+
54
+ # Training Details
55
+
56
+ ## Training Data
57
+
58
+ The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5.
59
+
60
+ The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**.
61
+ See the [T5-small model card](https://huggingface.co/t5-small?text=My+name+is+Wolfgang+and+I+live+in+Berlin) for further training data details.
62
+
63
+ ## Training Procedure
64
+
65
+
66
+ ### Preprocessing
67
+
68
+ More information needed
69
+
70
+ ### Speeds, Sizes, Times
71
+
72
+ More information needed
73
+
74
+ # Evaluation
75
+
76
+
77
+ ## Testing Data, Factors & Metrics
78
+
79
+ ### Testing Data
80
+
81
+ More information needed
82
+
83
+ ### Factors
84
+
85
+
86
+ ### Metrics
87
+
88
+ More information needed
89
+ ## Results
90
+
91
+ More information needed
92
+
93
+ # Model Examination
94
+
95
+ More information needed
96
+
97
+ # Environmental Impact
98
+
99
+
100
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
101
+
102
+ - **Hardware Type:** More information needed
103
+ - **Hours used:** More information needed
104
+ - **Cloud Provider:** More information needed
105
+ - **Compute Region:** More information needed
106
+ - **Carbon Emitted:** More information needed
107
+
108
+ # Technical Specifications [optional]
109
+
110
+ ## Model Architecture and Objective
111
+
112
+ More information needed
113
+
114
+ ## Compute Infrastructure
115
+
116
+ More information needed
117
+
118
+ ### Hardware
119
+
120
+ More information needed
121
+
122
+ ### Software
123
+ More information needed
124
+
125
+ # Citation
126
+
127
+
128
+ **BibTeX:**
129
+ ```bibtex
130
+ @article{2020t5,
131
+ author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
132
+ title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
133
+ journal = {Journal of Machine Learning Research},
134
+ year = {2020},
135
+ volume = {21},
136
+ number = {140},
137
+ pages = {1-67},
138
+ url = {http://jmlr.org/papers/v21/20-074.html}
139
+ }
140
+ ```
141
+
142
+
143
+ **APA:**
144
+ - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
145
+
146
+
147
+ # Glossary [optional]
148
+ More information needed
149
+
150
+ # More Information [optional]
151
+
152
+ More information needed
153
+
154
+ # Model Card Authors [optional]
155
+
156
+
157
+ UCI NLPin collaboration with Ezi Ozoani and the Hugging Face team
158
+
159
+ # Model Card Contact
160
+
161
+ More information needed
162
+
163
+ # How to Get Started with the Model
164
+
165
+ Use the code below to get started with the model.
166
+
167
+ <details>
168
+ <summary> Click to expand </summary>
169
+
170
+ ```python
171
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
172
+
173
+ tokenizer = AutoTokenizer.from_pretrained("ucinlp/diabetes-t5-small")
174
+
175
+ model = AutoModelForSeq2SeqLM.from_pretrained("ucinlp/diabetes-t5-small")
176
+
177
+ ```
178
+
179
+ </details>
180
+