File size: 4,948 Bytes
59081f4 52d9354 59081f4 52d9354 59081f4 52d9354 59081f4 52d9354 59081f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- accuracy
model-index:
- name: bart-base-finetuned-xe_ey_fae
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: datasets/all_binary_and_xe_ey_fae_counterfactual
type: datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- name: Accuracy
type: accuracy
value: 0.7180178883360112
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-xe_ey_fae
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3945
- Accuracy: 0.7180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 100
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 5.4226 | 0.06 | 500 | 3.8138 | 0.3628 |
| 4.0408 | 0.12 | 1000 | 3.0576 | 0.4630 |
| 3.4979 | 0.18 | 1500 | 2.7016 | 0.5133 |
| 3.1691 | 0.24 | 2000 | 2.4880 | 0.5431 |
| 2.9564 | 0.3 | 2500 | 2.3309 | 0.5644 |
| 2.8078 | 0.35 | 3000 | 2.2320 | 0.5792 |
| 2.6741 | 0.41 | 3500 | 2.1506 | 0.5924 |
| 2.5323 | 0.47 | 4000 | 1.9846 | 0.6176 |
| 2.3678 | 0.53 | 4500 | 1.8813 | 0.6375 |
| 2.25 | 0.59 | 5000 | 1.8100 | 0.6497 |
| 2.1795 | 0.65 | 5500 | 1.7632 | 0.6579 |
| 2.1203 | 0.71 | 6000 | 1.7238 | 0.6646 |
| 2.0764 | 0.77 | 6500 | 1.6856 | 0.6713 |
| 2.026 | 0.83 | 7000 | 1.6569 | 0.6760 |
| 1.9942 | 0.89 | 7500 | 1.6309 | 0.6803 |
| 1.9665 | 0.95 | 8000 | 1.6122 | 0.6836 |
| 1.9395 | 1.0 | 8500 | 1.5913 | 0.6866 |
| 1.9155 | 1.06 | 9000 | 1.5758 | 0.6895 |
| 1.8828 | 1.12 | 9500 | 1.5607 | 0.6918 |
| 1.8721 | 1.18 | 10000 | 1.5422 | 0.6948 |
| 1.8474 | 1.24 | 10500 | 1.5320 | 0.6964 |
| 1.8293 | 1.3 | 11000 | 1.5214 | 0.6978 |
| 1.8129 | 1.36 | 11500 | 1.5102 | 0.6998 |
| 1.8148 | 1.42 | 12000 | 1.5010 | 0.7013 |
| 1.7903 | 1.48 | 12500 | 1.4844 | 0.7038 |
| 1.7815 | 1.54 | 13000 | 1.4823 | 0.7039 |
| 1.7637 | 1.6 | 13500 | 1.4746 | 0.7052 |
| 1.7623 | 1.66 | 14000 | 1.4701 | 0.7061 |
| 1.7402 | 1.71 | 14500 | 1.4598 | 0.7076 |
| 1.7376 | 1.77 | 15000 | 1.4519 | 0.7090 |
| 1.7287 | 1.83 | 15500 | 1.4501 | 0.7101 |
| 1.7273 | 1.89 | 16000 | 1.4409 | 0.7107 |
| 1.7119 | 1.95 | 16500 | 1.4314 | 0.7125 |
| 1.7098 | 2.01 | 17000 | 1.4269 | 0.7129 |
| 1.6978 | 2.07 | 17500 | 1.4275 | 0.7132 |
| 1.698 | 2.13 | 18000 | 1.4218 | 0.7140 |
| 1.6837 | 2.19 | 18500 | 1.4151 | 0.7147 |
| 1.6908 | 2.25 | 19000 | 1.4137 | 0.7149 |
| 1.6902 | 2.31 | 19500 | 1.4085 | 0.7161 |
| 1.6741 | 2.36 | 20000 | 1.4121 | 0.7154 |
| 1.6823 | 2.42 | 20500 | 1.4037 | 0.7165 |
| 1.6692 | 2.48 | 21000 | 1.4039 | 0.7164 |
| 1.6669 | 2.54 | 21500 | 1.4015 | 0.7172 |
| 1.6613 | 2.6 | 22000 | 1.3979 | 0.7179 |
| 1.664 | 2.66 | 22500 | 1.3960 | 0.7180 |
| 1.6615 | 2.72 | 23000 | 1.4012 | 0.7172 |
| 1.6627 | 2.78 | 23500 | 1.3974 | 0.7178 |
| 1.6489 | 2.84 | 24000 | 1.3948 | 0.7182 |
| 1.6429 | 2.9 | 24500 | 1.3921 | 0.7184 |
| 1.6477 | 2.96 | 25000 | 1.3910 | 0.7182 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|