File size: 1,193 Bytes
9d6e32f
 
 
26b70be
28337fa
26b70be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
license: mit
---

<span style="color:blue">**Note: please check [DeepKPG](https://github.com/uclanlp/DeepKPG#scibart) for using this model in huggingface, including setting up the newly trained tokenizer.**</span>.

Paper: [Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study](https://arxiv.org/abs/2212.10233)

```
@article{https://doi.org/10.48550/arxiv.2212.10233,
  doi = {10.48550/ARXIV.2212.10233},
  url = {https://arxiv.org/abs/2212.10233},
  author = {Wu, Di and Ahmad, Wasi Uddin and Chang, Kai-Wei},
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study},
  publisher = {arXiv},
  year = {2022}, 
  copyright = {Creative Commons Attribution 4.0 International}
}
```

Pre-training Corpus: [S2ORC (titles and abstracts)](https://github.com/allenai/s2orc)

Pre-training Details:
- **Pre-trained from scratch with science vocabulary**
- Batch size: 2048
- Total steps: 250k
- Learning rate: 3e-4
- LR schedule: polynomial with 10k warmup steps
- Masking ratio: 30%, Poisson lambda = 3.5