File size: 6,601 Bytes
3564085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: apache-2.0
tags:
- visual_bert
- transformers
- image-to-text
- image-captioning

---

# Model Card for visualbert-vcr   
 
# Model Details
 
## Model Description
 
VisualBERT, a simple and flexible framework for modeling a broad range of vision-and-language (V&L) tasks on image-caption data.

 
- **Developed by:**  UCLA NLP

- **Shared by [Optional]:**  [Gunjan Chhablani](https://huggingface.co/gchhablani)

- **Model type:**  Image to Text
- **Language(s) (NLP):** More information needed
- **License:** Apache 2.0
- **Parent Model:** More information needed
- **Resources for more information:**
 	- [GitHub Repo](https://github.com/uclanlp/visualbert)
   - [Associated Paper](https://arxiv.org/abs/1908.03557)


# Uses
 

## Direct Use
This model can be used for vision-and-language (V&L) tasks on image-caption data.
 
## Downstream Use [Optional]
 
More information needed.
 
## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.



## Recommendations
 
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

# Training Details
 
## Training Data

The model creators note in the [associated paper](https://arxiv.org/pdf/1908.03557.pdf):
> We evaluate VisualBERT on four different types of vision-and-language applications: 
(1) **Vi- sual Question Answering (VQA 2.0):** 
Given an image and a question, the task is to correctly answer the question. We use the VQA 2.0 (Goyal et al., 2017), consisting of over 1 million questions about images from COCO. We train the model to predict the 3,129 most frequent answers and use image features from a ResNeXt-based
 (2) **Visual Commonsense Reasoning (VCR):** 
VCR consists of 290k questions derived from 110k movie scenes, where the questions focus on visual commonsense.
(3) **Natural Language for Visual Reasoning (NLVR2):**
NLVR2 is a dataset for joint reasoning about natural language and images, with a focus on semantic diversity, compositionality, and visual reasoning challenges. The task is to determine whether a natural language caption is true about a pair of images. The dataset consists of over 100k examples of English sentences paired with web images. We modify the segment embedding mechanism in VisualBERT and assign features from different images with different segment embeddings.
 (4) **Region-to-Phrase Grounding (Flickr30K)**
 Flickr30K Entities dataset tests the ability of systems to ground phrases in captions to bounding regions in the image. The task is, given spans from a sentence, selecting the bounding regions they correspond to. The dataset consists of 30k images and nearly 250k annotations.
 
 
## Training Procedure

 
### Preprocessing
The model creators note in the [associated paper](https://arxiv.org/pdf/1908.03557.pdf):
> The parameters are initializedfromthepre-trainedBERTBASE parameters


 
### Speeds, Sizes, Times
The model creators note in the [associated paper](https://arxiv.org/pdf/1908.03557.pdf):
> The Transformer encoder in all models has the same configuration as BERTBASE: 12 layers, a hidden size of 768, and 12 self-attention heads. The parameters are initializedfromthepre-trainedBERTBASE parameters
> Batch sizes are chosen to meet hardware constraints and text sequences whose lengths are longer than 128 are capped.


 
# Evaluation
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
 
More information needed
 
### Factors
More information needed
 
### Metrics
 
More information needed
 
 
## Results 
 
See [associated paper](https://arxiv.org/pdf/1908.03557.pdf) for more inforamtion.

 
# Model Examination
 
More information needed
 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** Tesla V100s and GTX 1080Tis
- **Hours used:** 
	The model creators note in the [associated paper](https://arxiv.org/pdf/1908.03557.pdf):
	> Pre-training on COCO generally takes less than a day on 4 cards while task-specific pre-training and fine-tuning usually takes less
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed
 
## Compute Infrastructure
 
More information needed
 
### Hardware
 
The model creators note in the [associated paper](https://arxiv.org/pdf/1908.03557.pdf):
 
> Experiments are conducted on Tesla V100s and GTX 1080Tis, and all experiments can be replicated on at most 4 Tesla V100s each with 16GBs of GPU memory. 
 
### Software
 
More information needed.
 
# Citation

 
**BibTeX:**
 
 
```bibtex
@misc{https://doi.org/10.48550/arxiv.1908.03557,
  doi = {10.48550/ARXIV.1908.03557},
  
  url = {https://arxiv.org/abs/1908.03557},
  
  author = {Li, Liunian Harold and Yatskar, Mark and Yin, Da and Hsieh, Cho-Jui and Chang, Kai-Wei},
  
  keywords = {Computer Vision and Pattern Recognition (cs.CV), Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {VisualBERT: A Simple and Performant Baseline for Vision and Language},
  
  publisher = {arXiv},
  
  year = {2019},
 
```
 
 
 
 
# Glossary [optional]
 
More information needed

# More Information [optional]
More information needed 

# Model Card Authors [optional]
 
UCLA NLP.  in collaboration with Ezi Ozoani and the Hugging Face team

# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForMultipleChoice

tokenizer = AutoTokenizer.from_pretrained("uclanlp/visualbert-vcr")

model = AutoModelForMultipleChoice.from_pretrained("uclanlp/visualbert-vcr")
 
 ```
</details>