ucsahin commited on
Commit
fa17d6d
·
verified ·
1 Parent(s): 033521f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -146
README.md CHANGED
@@ -1,199 +1,146 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
 
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
  ### Model Description
15
-
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
164
 
165
- [More Information Needed]
 
 
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - ucsahin/TR-VLM-DPO-Dataset
5
+ language:
6
+ - tr
7
+ pipeline_tag: image-text-to-text
8
+ license: apache-2.0
9
+ base_model: ucsahin/TraVisionLM-base
10
  ---
11
 
12
+ <!-- # TraVisionLM - Fast and Native Turkish Visual Language Model -->
13
+ <div style="text-align: center;">
14
+ <img src="logo-white-dpo.png" alt="logo" style="width: 90%; height: auto;">
15
+ </div>
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
18
+ ## This is the DPO optimized version of the base model [TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base).
19
+ When compared to the base model, the DPO version should answer questions more accurately, truthfully, and in more details.
20
 
21
+ ### You can check out the model at: [TRaVisionLM-DPO-Demo](https://huggingface.co/spaces/ucsahin/TraVisionLM-Demo)
22
 
23
+ ### Visual Language Model DPO Training: [Colab Notebook](https://colab.research.google.com/drive/1ypEPQ3RBX3_X7m9qfmU-Op-vGgOjab_z?usp=sharing)
24
 
25
  ### Model Description
 
26
  <!-- Provide a longer summary of what this model is. -->
27
 
28
+ - **Developed by:** [ucsahin](https://huggingface.co/ucsahin)
29
+ - **Model type:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
30
+ - **Language(s) (NLP):** *Turkish*
31
+ - **License:** *Apache license 2.0*
32
+ -
33
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ ## English
36
+ # 🎉 Introducing TraVisionLM: The First of Its Kind! 🚀
37
 
38
+ 🌟 This is a very fast and small (only 875M parameters) visual language model on Hugging Face that responds to Turkish instructions given an image input! 🌟
39
 
40
+ Developed compatible with the Transformers library, TRaVisionLM is a breeze to load, fine-tune, and use for lightning-fast inferences—all without needing any external libraries! ⚡️
41
 
42
+ Ready to experience the Turkish visual language model? Let's go! 🇹🇷🖼️🤖
43
 
 
44
 
45
+ ## Türkçe
46
+ # 🎉 TraVisionLM: Türünün İlk Örneği! 🚀
47
 
48
+ 🌟 Çok hızlı ve küçük boyutlu (sadece 875M parametre) Türkçe görsel dil modeli! Bir görüntü ve Türkçe talimat verildiğinde Türkçe yanıt üretir! 🌟
49
 
50
+ Transformers kütüphanesi ile uyumlu olarak geliştirilen TraVisionLM modeli ile, yükleme, eğitme ve dış kütüphaneler kullanmadan hızlı sonuçlar almak çok kolay! ⚡️
51
 
52
+ Türkçe görsel dil modelini deneyimlemeye hazır mısınız? Hadi başlayalım! 🇹🇷🖼️🤖
53
 
54
+ ---
55
 
56
  ## How to Get Started with the Model
57
 
58
+ In Transformers, you can load the model and inference as follows:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ **IMPORTANT NOTE:** TraVisionLM model is not yet integrated natively into the Transformers library. So you need to set ```trust_remote_code=True``` when loading the model. It will download the ```configuration_travisionlm.py```, ```modeling_travisionlm.py``` and ```processing_travisionlm.py``` files from the repo. You can check out the content of these files under the *Files and Versions* tab and pin the specific versions if you have any concerns regarding malicious code.
61
 
62
+ ```python
63
+ from transformers import AutoModelForCausalLM, AutoProcessor
64
+ import torch
65
+ import requests
66
+ from PIL import Image
67
 
68
+ model = AutoModelForCausalLM.from_pretrained('ucsahin/TraVisionLM-DPO', trust_remote_code=True, device_map="cuda")
69
+ # you can also load the model in bfloat16 or float16
70
+ # model = AutoModelForCausalLM.from_pretrained('ucsahin/TraVisionLM-DPO', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda")
71
+ processor = AutoProcessor.from_pretrained('ucsahin/TraVisionLM-DPO', trust_remote_code=True)
72
 
73
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
74
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
 
 
 
75
 
76
+ prompt = "Açıkla" # short caption
77
+ # prompt = "Detaylı açıkla" # detailed caption
78
+ # prompt = "Araba ne renktir?" # visual qa
79
+ # prompt = "Resmin odak noktası nedir?" # visual qa
80
+ # prompt = "Araba nerede duruyor?" # visual qa
81
 
82
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
83
 
84
+ outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2)
85
 
86
+ output_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
87
+ print("Model response: ", output_text)
88
+ ```
89
 
90
+ You can also perform batch inference as follows (make sure that all images have a prompt text associated with them):
91
 
92
+ ```python
93
+ from transformers import AutoModelForCausalLM, AutoProcessor
94
+ import torch
95
+ import requests
96
+ from PIL import Image
97
 
98
+ model = AutoModelForCausalLM.from_pretrained('ucsahin/TraVisionLM-base', trust_remote_code=True, device_map="cuda")
99
+ # you can also load the model in bfloat16 or float16
100
+ # model = AutoModelForCausalLM.from_pretrained('ucsahin/TraVisionLM-base', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda")
101
+ processor = AutoProcessor.from_pretrained('ucsahin/TraVisionLM-base', trust_remote_code=True)
102
 
103
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
104
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
105
 
106
+ prompt_list = [
107
+ 'Açıkla',
108
+ 'Detaylı açıkla',
109
+ 'Araba nerede duruyor?',
110
+ 'Arabanın rengi nedir?',
111
+ ]
112
 
113
+ inputs = processor(text=prompt_list, images=len(prompt_list)*[image], padding="longest", return_tensors="pt").to("cuda")
114
 
115
+ outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2)
116
 
117
+ output_text_list = processor.batch_decode(outputs, skip_special_tokens=True)
118
 
119
+ for output_text in output_text_list:
120
+ print(f"Model response: {output_text}\n\n\n")
121
+ ```
122
 
123
+ The output will look like this:
124
+ ```
125
+ """
126
+ Model response: Açıkla
127
+ Bir binanın önünde, sokakta park halindeki mavi bir Volkswagen Beetle.
128
 
 
129
 
 
130
 
131
+ Model response: Detaylı açıkla
132
+ Bu görüntüde, bir taş döşeli sokakta park edilmiş yeşil ve mavi bir Volkswagen Beetle bulunmaktadır. Arka planda iki sarı bina vardır. Araba kameraya doğru bakmaktadır. Görüntü net odaklanmıştır ve renkler canlıdır. Görsel tarzı gerçekçidir.
133
 
 
134
 
 
135
 
136
+ Model response: Araba nerede duruyor?
137
+ Araba, sarı bir binanın yanında sokakta park edilmiş.
138
 
 
139
 
 
140
 
141
+ Model response: Arabanın rengi nedir?
142
+ Araba turkuaz veya limon yeşili renktedir.
143
+ """
144
+ ```
145
 
146
+ ---