Update README.md
Browse files
README.md
CHANGED
@@ -31,7 +31,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
# mT5-base-turkish-qa
|
33 |
|
34 |
-
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the
|
35 |
It achieves the following results on the evaluation set:
|
36 |
- Loss: 0.5109
|
37 |
- Rouge1: 79.3283
|
@@ -48,21 +48,41 @@ mT5-base model is trained with manually curated Turkish dataset consisting of 65
|
|
48 |
The intended use of the model is extractive question answering.
|
49 |
|
50 |
In order to use the inference widget, enter your input in the format:
|
51 |
-
|
52 |
Soru: question_text
|
53 |
Metin: context_text
|
54 |
-
|
55 |
|
56 |
Generated response by the model:
|
57 |
-
|
58 |
Cevap: answer_text
|
59 |
-
|
60 |
|
61 |
-
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
### Training hyperparameters
|
68 |
|
|
|
31 |
|
32 |
# mT5-base-turkish-qa
|
33 |
|
34 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the [ucsahin/TR-Extractive-QA-82K](https://huggingface.co/datasets/ucsahin/TR-Extractive-QA-82K) dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
- Loss: 0.5109
|
37 |
- Rouge1: 79.3283
|
|
|
48 |
The intended use of the model is extractive question answering.
|
49 |
|
50 |
In order to use the inference widget, enter your input in the format:
|
51 |
+
```
|
52 |
Soru: question_text
|
53 |
Metin: context_text
|
54 |
+
```
|
55 |
|
56 |
Generated response by the model:
|
57 |
+
```
|
58 |
Cevap: answer_text
|
59 |
+
```
|
60 |
|
61 |
+
Use with Transformers:
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
64 |
+
from datasets import load_dataset
|
65 |
|
66 |
+
# Load the dataset
|
67 |
+
qa_tr_datasets = load_dataset("ucsahin/TR-Extractive-QA-82K")
|
68 |
|
69 |
+
# Load model and tokenizer
|
70 |
+
model_checkpoint = "ucsahin/mT5-base-turkish-qa"
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
72 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
73 |
+
|
74 |
+
inference_dataset = qa_tr_datasets["test"].select(range(10))
|
75 |
+
|
76 |
+
for input in inference_dataset:
|
77 |
+
input_question = "Soru: " + input["question"]
|
78 |
+
input_context = "Metin: " + input["context"]
|
79 |
+
|
80 |
+
tokenized_inputs = tokenizer(input_question, input_context, max_length=512, truncation=True, return_tensors="pt")
|
81 |
+
outputs = model.generate(input_ids=tokenized_inputs["input_ids"], max_new_tokens=32)
|
82 |
+
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
83 |
+
|
84 |
+
print(f"Reference answer: {input['answer']}, Model Answer: {output_text}")
|
85 |
+
```
|
86 |
|
87 |
### Training hyperparameters
|
88 |
|