--- license: apache-2.0 base_model: google/mt5-base tags: - Question Answering - generated_from_trainer metrics: - rouge model-index: - name: mT5-base-turkish-qa results: [] language: - tr pipeline_tag: text2text-generation widget: - text: >- Soru: Nazım Hikmet ne zaman doğmuştur? Metin: Nâzım Hikmet, Mehmed Nâzım adıyla 15 Ocak 1902 tarihinde Selanik'te doğdu. O sırada Hariciye Nezareti memuru olarak Selanik'te çalışan Hikmet Bey, Nâzım'ın çocukluğunda memuriyetten ayrıldı ve ailesiyle birlikte, Halep'te bulunan babasının yanına gitti. Burada bulundukları sırada Hikmet-Celile çiftinin biri Ali İbrahim, diğeri Samiye adında iki çocuğu oldu, fakat Ali İbrahim dizanteriye yakalanıp öldü. datasets: - ucsahin/TR-Extractive-QA-82K --- # mT5-base-turkish-qa This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5109 - Rouge1: 79.3283 - Rouge2: 68.0845 - Rougel: 79.3474 - Rougelsum: 79.2937 ## Model description mT5-base model is trained with manually curated Turkish dataset consisting of 65K training samples with ("question", "answer", "context") triplets. ## Intended uses & limitations The intended use of the model is extractive question answering. In order to use the inference widget, enter your input in the format: """ Soru: question_text Metin: context_text """ Generated response by the model: """ Cevap: answer_text """ ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0454 | 0.13 | 500 | 0.6771 | 73.1040 | 59.8915 | 73.1819 | 73.0558 | | 0.8012 | 0.26 | 1000 | 0.6012 | 76.3357 | 64.1967 | 76.3796 | 76.2688 | | 0.7703 | 0.39 | 1500 | 0.5844 | 76.8932 | 65.2509 | 76.9932 | 76.9418 | | 0.6783 | 0.51 | 2000 | 0.5587 | 76.7284 | 64.8453 | 76.7416 | 76.6720 | | 0.6546 | 0.64 | 2500 | 0.5362 | 78.2261 | 66.5893 | 78.2515 | 78.2142 | | 0.6289 | 0.77 | 3000 | 0.5133 | 78.6917 | 67.1534 | 78.6852 | 78.6319 | | 0.6292 | 0.9 | 3500 | 0.5109 | 79.3283 | 68.0845 | 79.3474 | 79.2937 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0