uer commited on
Commit
3afd260
1 Parent(s): 49a2020

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: zh
3
+ datasets: CLUECorpusSmall
4
+ widget:
5
+ - text: "北京是[MASK]国的首都。"
6
+
7
+ ---
8
+
9
+ # Chinese Xlarge Whole Word Masking RoBERTa Model
10
+
11
+ ## Model description
12
+
13
+ This is an xlarge Chinese Whole Word Masking RoBERTa model pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) introduced in [this paper](https://arxiv.org/abs/2212.06385), which inherits [UER-py](https://github.com/dbiir/UER-py/) to support models with parameters above one billion, and extends it to a multimodal pre-training framework.
14
+
15
+ [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the xlarge Chinese Whole Word Masking RoBERTa model. In order to facilitate users in reproducing the results, we used a publicly available corpus and word segmentation tool, and provided all training details.
16
+
17
+ You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the link [roberta-xlarge-wwm-chinese-cluecorpussmall](https://huggingface.co/uer/roberta-xlarge-wwm-chinese-cluecorpussmall):
18
+
19
+ ## How to use
20
+
21
+ You can use this model directly with a pipeline for masked language modeling:
22
+
23
+ ```python
24
+ >>> from transformers import pipeline
25
+ >>> unmasker = pipeline('fill-mask', model='uer/roberta-xlarge-wwm-chinese-cluecorpussmall')
26
+ >>> unmasker("北京是[MASK]国的首都。")
27
+
28
+ ```
29
+
30
+ Here is how to use this model to get the features of a given text in PyTorch:
31
+
32
+ ```python
33
+ from transformers import BertTokenizer, BertModel
34
+ tokenizer = BertTokenizer.from_pretrained('uer/roberta-xlarge-wwm-chinese-cluecorpussmall')
35
+ model = BertModel.from_pretrained("uer/roberta-xlarge-wwm-chinese-cluecorpussmall")
36
+ text = "用你喜欢的任何文本替换我。"
37
+ encoded_input = tokenizer(text, return_tensors='pt')
38
+ output = model(**encoded_input)
39
+ ```
40
+
41
+ and in TensorFlow:
42
+
43
+ ```python
44
+ from transformers import BertTokenizer, TFBertModel
45
+ tokenizer = BertTokenizer.from_pretrained('uer/roberta-xlarge-wwm-chinese-cluecorpussmall')
46
+ model = TFBertModel.from_pretrained("uer/roberta-xlarge-wwm-chinese-cluecorpussmall")
47
+ text = "用你喜欢的任何文本替换我。"
48
+ encoded_input = tokenizer(text, return_tensors='tf')
49
+ output = model(encoded_input)
50
+ ```
51
+
52
+ ## Training data
53
+
54
+ [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
55
+
56
+ ## Training procedure
57
+
58
+ Models are pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 500,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
59
+
60
+ [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool.
61
+
62
+ Stage1:
63
+
64
+ ```
65
+ python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
66
+ --vocab_path models/google_zh_vocab.txt \
67
+ --dataset_path cluecorpussmall_seq128_dataset.pt \
68
+ --processes_num 32 --seq_length 128 \
69
+ --dynamic_masking --data_processor mlm
70
+ ```
71
+
72
+ ```
73
+ deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json --dataset_path cluecorpussmall_seq128_dataset.pt \
74
+ --vocab_path models/google_zh_vocab.txt \
75
+ --config_path models/bert/xlarge_config.json \
76
+ --output_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq128_model \
77
+ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
78
+ --total_steps 500000 --save_checkpoint_steps 50000 --report_steps 500 \
79
+ --learning_rate 2e-5 --batch_size 128 --deep_init \
80
+ --whole_word_masking --deepspeed_checkpoint_activations \
81
+ --data_processor mlm --target mlm
82
+ ```
83
+
84
+ Before stage2, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:
85
+
86
+ ```
87
+ python3 models/cluecorpussmall_wwm_roberta_xlarge_seq128_model/zero_to_fp32.py models/cluecorpussmall_wwm_roberta_xlarge_seq128_model/ \
88
+ models/cluecorpussmall_wwm_roberta_xlarge_seq128_model.bin
89
+ ```
90
+
91
+ Stage2:
92
+
93
+ ```
94
+ python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
95
+ --vocab_path models/google_zh_vocab.txt \
96
+ --dataset_path cluecorpussmall_seq512_dataset.pt \
97
+ --processes_num 32 --seq_length 512 \
98
+ --dynamic_masking --data_processor mlm
99
+ ```
100
+
101
+ ```
102
+ deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json --dataset_path cluecorpussmall_seq512_dataset.pt \
103
+ --vocab_path models/google_zh_vocab.txt \
104
+ --config_path models/bert/xlarge_config.json \
105
+ --pretrained_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq128_model.bin \
106
+ --output_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq512_model \
107
+ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
108
+ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 500 \
109
+ --learning_rate 5e-5 --batch_size 32 \
110
+ --whole_word_masking --deepspeed_checkpoint_activations \
111
+ --data_processor mlm --target mlm
112
+ ```
113
+
114
+ Then, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:
115
+
116
+ ```
117
+ python3 models/cluecorpussmall_wwm_roberta_xlarge_seq512_model/zero_to_fp32.py models/cluecorpussmall_wwm_roberta_xlarge_seq512_model/ \
118
+ models/cluecorpussmall_wwm_roberta_xlarge_seq512_model.bin
119
+ ```
120
+
121
+ Finally, we convert the pre-trained model into Huggingface's format:
122
+
123
+ ```
124
+ python3 scripts/convert_bert_from_tencentpretrain_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_xlarge_seq512_model.bin \
125
+ --output_model_path pytorch_model.bin \
126
+ --layers_num 36 --type mlm
127
+ ```
128
+
129
+ ### BibTeX entry and citation info
130
+
131
+ ```
132
+ @article{zhao2019uer,
133
+ title={UER: An Open-Source Toolkit for Pre-training Models},
134
+ author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
135
+ journal={EMNLP-IJCNLP 2019},
136
+ pages={241},
137
+ year={2019}
138
+ }
139
+
140
+ @article{zhao2023tencentpretrain,
141
+ title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
142
+ author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
143
+ journal={ACL 2023},
144
+ pages={217},
145
+ year={2023}
146
+ ```