Update README.md
Browse files
README.md
CHANGED
@@ -19,7 +19,7 @@ widget:
|
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
-
This model
|
23 |
|
24 |
## Training data
|
25 |
|
@@ -27,18 +27,17 @@ This model is pre-trained by [UER-py](https://arxiv.org/abs/1909.05658).
|
|
27 |
|
28 |
## Training procedure
|
29 |
|
30 |
-
|
31 |
|
32 |
```
|
33 |
-
python3 finetune/run_classifier_siamese.py --pretrained_model_path models/
|
34 |
--vocab_path models/google_zh_vocab.txt \
|
35 |
--config_path models/sbert/base_config.json \
|
36 |
--train_path datasets/ChineseTextualInference/train.tsv \
|
37 |
--dev_path datasets/ChineseTextualInference/dev.tsv \
|
38 |
-
--epochs_num
|
39 |
```
|
40 |
|
41 |
-
|
42 |
Finally, we convert the pre-trained model into Huggingface's format:
|
43 |
|
44 |
```
|
@@ -47,7 +46,6 @@ python3 scripts/convert_sbert_from_uer_to_huggingface.py --input_model_path mode
|
|
47 |
--layers_num 12
|
48 |
```
|
49 |
|
50 |
-
|
51 |
### BibTeX entry and citation info
|
52 |
|
53 |
```
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
This is the sentence embedding model pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658).
|
23 |
|
24 |
## Training data
|
25 |
|
|
|
27 |
|
28 |
## Training procedure
|
29 |
|
30 |
+
The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 128 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved.
|
31 |
|
32 |
```
|
33 |
+
python3 finetune/run_classifier_siamese.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
|
34 |
--vocab_path models/google_zh_vocab.txt \
|
35 |
--config_path models/sbert/base_config.json \
|
36 |
--train_path datasets/ChineseTextualInference/train.tsv \
|
37 |
--dev_path datasets/ChineseTextualInference/dev.tsv \
|
38 |
+
--learning_rate 5e-5 --epochs_num 5 --batch_size 64
|
39 |
```
|
40 |
|
|
|
41 |
Finally, we convert the pre-trained model into Huggingface's format:
|
42 |
|
43 |
```
|
|
|
46 |
--layers_num 12
|
47 |
```
|
48 |
|
|
|
49 |
### BibTeX entry and citation info
|
50 |
|
51 |
```
|