uer commited on
Commit
e2b809c
1 Parent(s): 4acd943

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -6
README.md CHANGED
@@ -19,7 +19,7 @@ widget:
19
 
20
  ## Model description
21
 
22
- This model is pre-trained by [UER-py](https://arxiv.org/abs/1909.05658).
23
 
24
  ## Training data
25
 
@@ -27,18 +27,17 @@ This model is pre-trained by [UER-py](https://arxiv.org/abs/1909.05658).
27
 
28
  ## Training procedure
29
 
30
- This model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune three epochs with a sequence length of 512 on the basis of the Google's pre-trained Chinese BERT model. At the end of each epoch, the model is saved when the best performance on development set is achieved.
31
 
32
  ```
33
- python3 finetune/run_classifier_siamese.py --pretrained_model_path models/google_zh_model.bin \
34
  --vocab_path models/google_zh_vocab.txt \
35
  --config_path models/sbert/base_config.json \
36
  --train_path datasets/ChineseTextualInference/train.tsv \
37
  --dev_path datasets/ChineseTextualInference/dev.tsv \
38
- --epochs_num 3 --batch_size 32
39
  ```
40
 
41
-
42
  Finally, we convert the pre-trained model into Huggingface's format:
43
 
44
  ```
@@ -47,7 +46,6 @@ python3 scripts/convert_sbert_from_uer_to_huggingface.py --input_model_path mode
47
  --layers_num 12
48
  ```
49
 
50
-
51
  ### BibTeX entry and citation info
52
 
53
  ```
 
19
 
20
  ## Model description
21
 
22
+ This is the sentence embedding model pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658).
23
 
24
  ## Training data
25
 
 
27
 
28
  ## Training procedure
29
 
30
+ The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 128 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved.
31
 
32
  ```
33
+ python3 finetune/run_classifier_siamese.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
34
  --vocab_path models/google_zh_vocab.txt \
35
  --config_path models/sbert/base_config.json \
36
  --train_path datasets/ChineseTextualInference/train.tsv \
37
  --dev_path datasets/ChineseTextualInference/dev.tsv \
38
+ --learning_rate 5e-5 --epochs_num 5 --batch_size 64
39
  ```
40
 
 
41
  Finally, we convert the pre-trained model into Huggingface's format:
42
 
43
  ```
 
46
  --layers_num 12
47
  ```
48
 
 
49
  ### BibTeX entry and citation info
50
 
51
  ```