Update README.md
Browse files
README.md
CHANGED
@@ -2,38 +2,45 @@
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
super().__init__()
|
10 |
-
#Generation Model
|
11 |
-
self.model = BlipForConditionalGeneration.from_pretrained(MODEL_NAME, cache_dir="model")
|
12 |
-
#Same with https://huggingface.co/uf-aice-lab/BLIP-Math
|
13 |
-
self.ebd_dim =
|
14 |
|
15 |
-
#Classification Model
|
16 |
fc_dim = 64 # You can choose a higher number for better performance, for example, 1024.
|
17 |
self.head = nn.Sequential(
|
18 |
nn.Linear(self.ebd_dim, fc_dim),
|
19 |
nn.ReLU(),
|
20 |
)
|
21 |
-
self.score = nn.Linear(fc_dim, 5)
|
22 |
|
23 |
def forward(self, pixel_values, input_ids):
|
24 |
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
|
25 |
image_text_embeds = self.model.vision_model(pixel_values, return_dict=True).last_hidden_state
|
26 |
-
image_text_embeds = self.head(
|
27 |
|
28 |
-
#A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities.
|
29 |
-
logits = self.score(
|
30 |
|
31 |
-
#generated text, probabilities of classification
|
32 |
return outputs, logits
|
33 |
-
|
34 |
model = BLIPNet()
|
35 |
-
model.load_state_dict(torch.load(best_model_wts_path)
|
36 |
-
|
37 |
-
You need to input the sample in the same way as:
|
38 |
-
https://huggingface.co/uf-aice-lab/BLIP-Math
|
39 |
-
Then you can get the text and score at the same time.
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
+
# BLIPNet Model
|
6 |
|
7 |
+
This is the structure of the BLIPNet model. You can load the model with this structure, or you can create a bigger model for your specific task.
|
8 |
+
|
9 |
+
## Model Structure
|
10 |
+
|
11 |
+
```python
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from transformers import BlipForConditionalGeneration
|
15 |
+
|
16 |
+
class BLIPNet(torch.nn.Module):
|
17 |
+
def __init__(self):
|
18 |
super().__init__()
|
19 |
+
# Generation Model
|
20 |
+
self.model = BlipForConditionalGeneration.from_pretrained("MODEL_NAME", cache_dir="model")
|
21 |
+
# Same with https://huggingface.co/uf-aice-lab/BLIP-Math
|
22 |
+
self.ebd_dim = 443136
|
23 |
|
24 |
+
# Classification Model
|
25 |
fc_dim = 64 # You can choose a higher number for better performance, for example, 1024.
|
26 |
self.head = nn.Sequential(
|
27 |
nn.Linear(self.ebd_dim, fc_dim),
|
28 |
nn.ReLU(),
|
29 |
)
|
30 |
+
self.score = nn.Linear(fc_dim, 5) # 5 classes
|
31 |
|
32 |
def forward(self, pixel_values, input_ids):
|
33 |
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
|
34 |
image_text_embeds = self.model.vision_model(pixel_values, return_dict=True).last_hidden_state
|
35 |
+
image_text_embeds = self.head(image_text_embeds.view(-1, self.ebd_dim))
|
36 |
|
37 |
+
# A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities.
|
38 |
+
logits = self.score(image_text_embeds)
|
39 |
|
40 |
+
# generated text, probabilities of classification
|
41 |
return outputs, logits
|
42 |
+
|
43 |
model = BLIPNet()
|
44 |
+
model.load_state_dict(torch.load("best_model_wts_path"), strict=False)
|
45 |
+
Usage
|
46 |
+
You need to input the sample in the same way as shown in the example provided at: BLIP-Math. Then you can get the generated text and classification score simultaneously.
|
|
|
|