Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,37 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
This is the structure of the BLIPNet model. You can load the model with it, or you can create a bigger model for your task.
|
6 |
+
|
7 |
+
class BLIPNet(torch.nn.Module):
|
8 |
+
def __init__(self, ):
|
9 |
+
super().__init__()
|
10 |
+
#Generation Model
|
11 |
+
self.model = BlipForConditionalGeneration.from_pretrained(MODEL_NAME, cache_dir="model")
|
12 |
+
#Same with https://huggingface.co/uf-aice-lab/BLIP-Math
|
13 |
+
self.ebd_dim = ebd_dim= 443136
|
14 |
+
|
15 |
+
#Classification Model
|
16 |
+
fc_dim = 64 # You can choose a higher number for better performance, for example, 1024.
|
17 |
+
self.head = nn.Sequential(
|
18 |
+
nn.Linear(self.ebd_dim, fc_dim),
|
19 |
+
nn.ReLU(),
|
20 |
+
)
|
21 |
+
self.score = nn.Linear(fc_dim, 5) #5 classes
|
22 |
+
|
23 |
+
|
24 |
+
def forward(self, pixel_values, input_ids):
|
25 |
+
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
|
26 |
+
image_text_embeds = self.model.vision_model(pixel_values, return_dict=True).last_hidden_state
|
27 |
+
image_text_embeds = self.head(image_embeds.view(-1, self.ebd_dim))
|
28 |
+
|
29 |
+
#A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities.
|
30 |
+
logits = self.score(image_embeds)
|
31 |
+
|
32 |
+
#generated text, probabilities of classification
|
33 |
+
return outputs, logits
|
34 |
+
|
35 |
+
You need to input the sample in the same way as:
|
36 |
+
https://huggingface.co/uf-aice-lab/BLIP-Math
|
37 |
+
Then you can get the text and score at the same time.
|