Commit
路
1db7a04
1
Parent(s):
bb48f67
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: question-answering
|
6 |
+
---
|
7 |
+
# Llama-mt-lora
|
8 |
+
|
9 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
+
|
11 |
+
This model is fine-tuned with LLaMA with 8 Nvidia A100-80G GPUs using 3,000,000 groups of conversations in the context of mathematics by students and facilitators on Algebra Nation (https://www.mathnation.com/). Llama-mt-lora consists of 32 layers and over 7 billion parameters, consuming up to 13.5 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively respond generation in a mathematical context.
|
12 |
+
### Here is how to use it with texts in HuggingFace
|
13 |
+
```python
|
14 |
+
import torch
|
15 |
+
import transformers
|
16 |
+
from transformers import LlamaTokenizer, AutoModelForCausalLM
|
17 |
+
tokenizer = LlamaTokenizer.from_pretrained("Fan21/Llama-mt-lora")
|
18 |
+
mdoel = LlamaForCausalLM.from_pretrained(
|
19 |
+
"Fan21/Llama-mt-lora",
|
20 |
+
load_in_8bit=False,
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
device_map="auto",
|
23 |
+
)
|
24 |
+
def generate_prompt(instruction, input=None):
|
25 |
+
if input:
|
26 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
27 |
+
### Instruction:
|
28 |
+
{instruction}
|
29 |
+
### Input:
|
30 |
+
{input}
|
31 |
+
### Response:"""
|
32 |
+
else:
|
33 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
34 |
+
### Instruction:
|
35 |
+
{instruction}
|
36 |
+
### Response:"""
|
37 |
+
|
38 |
+
def evaluate(
|
39 |
+
instruction,
|
40 |
+
input=None,
|
41 |
+
temperature=0.1,
|
42 |
+
top_p=0.75,
|
43 |
+
top_k=40,
|
44 |
+
num_beams=4,
|
45 |
+
max_new_tokens=128,
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
prompt = generate_prompt(instruction, input)
|
49 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
50 |
+
input_ids = inputs["input_ids"].to(device)
|
51 |
+
generation_config = GenerationConfig(
|
52 |
+
temperature=temperature,
|
53 |
+
top_p=top_p,
|
54 |
+
top_k=top_k,
|
55 |
+
num_beams=num_beams,
|
56 |
+
**kwargs,
|
57 |
+
)
|
58 |
+
with torch.no_grad():
|
59 |
+
generation_output = model.generate(
|
60 |
+
input_ids=input_ids,
|
61 |
+
generation_config=generation_config,
|
62 |
+
return_dict_in_generate=True,
|
63 |
+
output_scores=True,
|
64 |
+
max_new_tokens=max_new_tokens,
|
65 |
+
)
|
66 |
+
s = generation_output.sequences[0]
|
67 |
+
output = tokenizer.decode(s)
|
68 |
+
return output.split("### Response:")[1].strip()
|
69 |
+
instruction = 'write your instruction here'
|
70 |
+
inputs = 'write your inputs here'
|
71 |
+
output= evaluate(instruction,
|
72 |
+
input=inputs,
|
73 |
+
temperature=0.1,#change the parameters by yourself
|
74 |
+
top_p=0.75,
|
75 |
+
top_k=40,
|
76 |
+
num_beams=4,
|
77 |
+
max_new_tokens=128,)
|
78 |
+
```
|