uisikdag commited on
Commit
edaba0c
·
1 Parent(s): ed68ae4

add ultralytics model card

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - ultralyticsplus
5
+ - yolov8
6
+ - ultralytics
7
+ - yolo
8
+ - vision
9
+ - image-classification
10
+ - pytorch
11
+
12
+ library_name: ultralytics
13
+ library_version: 8.0.43
14
+ inference: false
15
+
16
+ model-index:
17
+ - name: uisikdag/weed_yolov8_balanced
18
+ results:
19
+ - task:
20
+ type: image-classification
21
+
22
+ metrics:
23
+ - type: accuracy
24
+ value: 0.9 # min: 0.0 - max: 1.0
25
+ name: top1 accuracy
26
+ - type: accuracy
27
+ value: 1.0 # min: 0.0 - max: 1.0
28
+ name: top5 accuracy
29
+ ---
30
+
31
+ <div align="center">
32
+ <img width="640" alt="uisikdag/weed_yolov8_balanced" src="https://huggingface.co/uisikdag/weed_yolov8_balanced/resolve/main/thumbnail.jpg">
33
+ </div>
34
+
35
+ ### Supported Labels
36
+
37
+ ```
38
+ ['Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed', 'Common wheat', 'Fat Hen', 'Loose Silky-bent', 'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet']
39
+ ```
40
+
41
+ ### How to use
42
+
43
+ - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
44
+
45
+ ```bash
46
+ pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
47
+ ```
48
+
49
+ - Load model and perform prediction:
50
+
51
+ ```python
52
+ from ultralyticsplus import YOLO, postprocess_classify_output
53
+
54
+ # load model
55
+ model = YOLO('uisikdag/weed_yolov8_balanced')
56
+
57
+ # set model parameters
58
+ model.overrides['conf'] = 0.25 # model confidence threshold
59
+
60
+ # set image
61
+ image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
62
+
63
+ # perform inference
64
+ results = model.predict(image)
65
+
66
+ # observe results
67
+ print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
68
+ processed_result = postprocess_classify_output(model, result=results[0])
69
+ print(processed_result) # {"cat": 0.4, "dog": 0.6}
70
+ ```
71
+