--- library_name: transformers base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8614 - Accuracy: 0.6145 - Precision: 0.6243 - Recall: 0.6145 - F1: 0.5971 - Roc Auc: 0.8073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | No log | 1.0 | 42 | 1.0433 | 0.4458 | 0.4351 | 0.4458 | 0.3685 | 0.7162 | | No log | 2.0 | 84 | 0.8946 | 0.5663 | 0.5641 | 0.5663 | 0.5559 | 0.7823 | | No log | 3.0 | 126 | 0.9142 | 0.5783 | 0.6385 | 0.5783 | 0.5332 | 0.7896 | | No log | 4.0 | 168 | 0.8497 | 0.6386 | 0.6434 | 0.6386 | 0.6299 | 0.8084 | | No log | 5.0 | 210 | 0.8614 | 0.6145 | 0.6243 | 0.6145 | 0.5971 | 0.8073 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.5 - Tokenizers 0.20.3