File size: 4,726 Bytes
cdfd2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from huggingface_hub import PyTorchModelHubMixin
from torch import nn

class SurfinBird(nn.Module, PyTorchModelHubMixin):
  def __init__(self, config: dict) -> None:
    super().__init__()
    self.conv1 = nn.Conv2d(
            in_channels=config["num_channels"],
            out_channels=64,
            kernel_size=7,
            stride=2,
            padding=3)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu1 = nn.ReLU()
    self.mp1 = nn.MaxPool2d(kernel_size=2,
                     stride=2)
    self.conv_block_2 = nn.Sequential(
        nn.Conv2d(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(64),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(64),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(64),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=2,
                     stride=2)
    )
    self.conv_block_3 = nn.Sequential(
        nn.Conv2d(
            in_channels=64,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(128),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(128),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(128),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=2,
                     stride=2)
    )
    self.conv_block_4 = nn.Sequential(
        nn.Conv2d(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(128),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(128),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(128),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=2,
                     stride=2)
    )
    self.conv_block_5 = nn.Sequential(
        nn.Conv2d(
            in_channels=128,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(256),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=256,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(256),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=256,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(256),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=2,
                     stride=2)
    )
    self.conv_block_6 = nn.Sequential(
        nn.Conv2d(
            in_channels=256,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(256),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=256,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(256),
        nn.ReLU(),
        nn.Conv2d(
            in_channels=256,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1
        ),
        nn.BatchNorm2d(256),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=2,
                     stride=2)
    )

    self.avgpool = nn.Sequential(
    nn.AdaptiveAvgPool2d(output_size=(1, 1))
    )

    self.classifier = nn.Sequential(
        nn.Flatten(),
        nn.Linear(in_features=config["hidden_units"]*1*1,
                  out_features=config["num_classes"])
    )
  def forward(self, x: torch.Tensor):
    return self.classifier(self.avgpool(self.conv_block_6(self.conv_block_5(self.conv_block_4(self.conv_block_3(self.conv_block_2(self.mp1(self.relu1(self.bn1(self.conv1(x)))))))))))

config = {"num_channels": 3, "hidden_units": 256, "num_classes": 525}