from huggingface_hub import PyTorchModelHubMixin from torch import nn class SurfinBird(nn.Module, PyTorchModelHubMixin): def __init__(self, config: dict) -> None: super().__init__() self.conv1 = nn.Conv2d( in_channels=config["num_channels"], out_channels=64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU() self.mp1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_block_2 = nn.Sequential( nn.Conv2d( in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d( in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d( in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.conv_block_3 = nn.Sequential( nn.Conv2d( in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d( in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d( in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.conv_block_4 = nn.Sequential( nn.Conv2d( in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d( in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d( in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.conv_block_5 = nn.Sequential( nn.Conv2d( in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d( in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d( in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.conv_block_6 = nn.Sequential( nn.Conv2d( in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d( in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d( in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1 ), nn.BatchNorm2d(256), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.avgpool = nn.Sequential( nn.AdaptiveAvgPool2d(output_size=(1, 1)) ) self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(in_features=config["hidden_units"]*1*1, out_features=config["num_classes"]) ) def forward(self, x: torch.Tensor): return self.classifier(self.avgpool(self.conv_block_6(self.conv_block_5(self.conv_block_4(self.conv_block_3(self.conv_block_2(self.mp1(self.relu1(self.bn1(self.conv1(x))))))))))) config = {"num_channels": 3, "hidden_units": 256, "num_classes": 525}