Upload 6 files
Browse files- CNN/CNN.ipynb +0 -0
- CNN/CNN.py +118 -0
- DenseNet/DenseNet.ipynb +0 -0
- DenseNet/DenseNet.py +606 -0
- ResNet/ResNet.ipynb +0 -0
- ResNet/ResNet.py +155 -0
CNN/CNN.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CNN/CNN.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled20.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1O_tHcmidNGKAgxAiG7Su44auJSRFR1xA
|
8 |
+
"""
|
9 |
+
|
10 |
+
import tensorflow as tf
|
11 |
+
from tensorflow.keras.models import Sequential
|
12 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
|
13 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
14 |
+
|
15 |
+
image_size = (128, 128)
|
16 |
+
batch_size = 32
|
17 |
+
train_datagen = ImageDataGenerator(
|
18 |
+
rescale=1./255,
|
19 |
+
shear_range=0.2,
|
20 |
+
zoom_range=0.2,
|
21 |
+
horizontal_flip=True
|
22 |
+
)
|
23 |
+
|
24 |
+
test_datagen = ImageDataGenerator(rescale=1./255)
|
25 |
+
|
26 |
+
train_generator = train_datagen.flow_from_directory(
|
27 |
+
'/content/drive/MyDrive/training',
|
28 |
+
target_size=image_size,
|
29 |
+
batch_size=batch_size,
|
30 |
+
class_mode='binary'
|
31 |
+
)
|
32 |
+
|
33 |
+
test_generator = test_datagen.flow_from_directory(
|
34 |
+
'/content/drive/MyDrive/testing',
|
35 |
+
target_size=image_size,
|
36 |
+
batch_size=batch_size,
|
37 |
+
class_mode='binary'
|
38 |
+
)
|
39 |
+
|
40 |
+
from tensorflow.keras.models import Sequential
|
41 |
+
|
42 |
+
model = Sequential()
|
43 |
+
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_size[0], image_size[1], 3)))
|
44 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
45 |
+
model.add(Conv2D(64, (3, 3), activation='relu'))
|
46 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
47 |
+
model.add(Conv2D(128, (3, 3), activation='relu'))
|
48 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
49 |
+
model.add(Flatten())
|
50 |
+
model.add(Dense(128, activation='relu'))
|
51 |
+
model.add(Dropout(0.5))
|
52 |
+
model.add(Dense(1, activation='sigmoid'))
|
53 |
+
|
54 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
55 |
+
model.fit(train_generator, epochs=10, validation_data=test_generator)
|
56 |
+
evaluation = model.evaluate(test_generator)
|
57 |
+
print(f"Test Accuracy: {evaluation[1] * 100:.2f}%")
|
58 |
+
|
59 |
+
predictions = model.predict(test_generator)
|
60 |
+
predicted_labels = (predictions > 0.5).astype(int)
|
61 |
+
|
62 |
+
from sklearn.metrics import confusion_matrix, classification_report
|
63 |
+
true_labels = test_generator.classes
|
64 |
+
conf_matrix = confusion_matrix(true_labels, predicted_labels)
|
65 |
+
print("Confusion Matrix:")
|
66 |
+
print(conf_matrix)
|
67 |
+
class_report = classification_report(true_labels, predicted_labels, target_names=['not_fractured', 'fractured'])
|
68 |
+
print("Classification Report:")
|
69 |
+
print(class_report)
|
70 |
+
|
71 |
+
import matplotlib.pyplot as plt
|
72 |
+
import random
|
73 |
+
test_images, true_labels = next(test_generator)
|
74 |
+
predicted_labels = (model.predict(test_images) > 0.5).astype(int)
|
75 |
+
plt.figure(figsize=(12, 8))
|
76 |
+
for i in range(10):
|
77 |
+
plt.subplot(2, 5, i+1)
|
78 |
+
plt.imshow(test_images[i])
|
79 |
+
plt.title(f"True: {true_labels[i]}, Predicted: {predicted_labels[i]}")
|
80 |
+
plt.axis('off')
|
81 |
+
plt.show()
|
82 |
+
|
83 |
+
import cv2
|
84 |
+
|
85 |
+
image = cv2.imread('/content/drive/MyDrive/testing/fractured/1-rotated1-rotated1-rotated2.jpg')
|
86 |
+
|
87 |
+
plt.imshow(image)
|
88 |
+
|
89 |
+
image.shape
|
90 |
+
|
91 |
+
image = cv2.resize(image,(256,256))
|
92 |
+
|
93 |
+
test_input = image.reshape((1,256,256,3))
|
94 |
+
|
95 |
+
image.shape
|
96 |
+
|
97 |
+
plt.imshow(image)
|
98 |
+
|
99 |
+
test_input = image.reshape((1,256,256,3))
|
100 |
+
|
101 |
+
!pip install keras
|
102 |
+
import keras
|
103 |
+
model = keras.Sequential([
|
104 |
+
keras.layers.Dense(128, activation="relu"),
|
105 |
+
keras.layers.Dense(64, activation="relu"),
|
106 |
+
keras.layers.Dense(10, activation="softmax")
|
107 |
+
])
|
108 |
+
|
109 |
+
!ls -l model
|
110 |
+
|
111 |
+
!stat model
|
112 |
+
|
113 |
+
!file model
|
114 |
+
|
115 |
+
!pip show tensorflow
|
116 |
+
|
117 |
+
model.predict(test_input)
|
118 |
+
|
DenseNet/DenseNet.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
DenseNet/DenseNet.py
ADDED
@@ -0,0 +1,606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""DenseNet.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1puXj_yhdhVZAi2D2P1mpDlDvccwU_63N
|
8 |
+
"""
|
9 |
+
|
10 |
+
import tensorflow as tf
|
11 |
+
from tensorflow.keras import Input
|
12 |
+
from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201
|
13 |
+
from tensorflow.keras.applications import MobileNetV3Small
|
14 |
+
from tensorflow.keras.optimizers import Adam
|
15 |
+
from tensorflow.keras.models import Sequential, Model
|
16 |
+
from tensorflow.keras.callbacks import ModelCheckpoint
|
17 |
+
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
|
18 |
+
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dense, Flatten, Dropout
|
19 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
20 |
+
from sklearn.model_selection import train_test_split
|
21 |
+
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, log_loss, jaccard_score
|
22 |
+
import numpy as np
|
23 |
+
import os
|
24 |
+
from PIL import Image
|
25 |
+
from shutil import copyfile
|
26 |
+
import pandas as pd
|
27 |
+
import seaborn as sns
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
|
30 |
+
from google.colab import drive
|
31 |
+
drive.mount('/content/drive')
|
32 |
+
|
33 |
+
train_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
|
34 |
+
test_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
|
35 |
+
validation_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
|
36 |
+
IMG_WIDTH, IMG_HEIGHT = 299, 299
|
37 |
+
input_shape = (IMG_WIDTH, IMG_HEIGHT, 3)
|
38 |
+
|
39 |
+
train_datagen = ImageDataGenerator(rescale=1./255)
|
40 |
+
test_datagen = ImageDataGenerator(rescale=1./255)
|
41 |
+
validation_datagen = ImageDataGenerator(rescale=1./255)
|
42 |
+
|
43 |
+
train_datagen_augmented = ImageDataGenerator(
|
44 |
+
rescale=1./255,
|
45 |
+
rotation_range=20,
|
46 |
+
width_shift_range=0.2,
|
47 |
+
height_shift_range=0.2,
|
48 |
+
shear_range=0.2,
|
49 |
+
zoom_range=0.2,
|
50 |
+
horizontal_flip=True,
|
51 |
+
vertical_flip=False,
|
52 |
+
fill_mode='nearest'
|
53 |
+
)
|
54 |
+
|
55 |
+
train_generator = train_datagen_augmented.flow_from_directory(train_data_dir, target_size=(IMG_WIDTH, IMG_HEIGHT), batch_size=10, class_mode='categorical')
|
56 |
+
|
57 |
+
test_datagen_augmented = ImageDataGenerator(
|
58 |
+
rescale=1./255,
|
59 |
+
rotation_range=20,
|
60 |
+
width_shift_range=0.2,
|
61 |
+
height_shift_range=0.2,
|
62 |
+
shear_range=0.2,
|
63 |
+
zoom_range=0.2,
|
64 |
+
horizontal_flip=True,
|
65 |
+
vertical_flip=False,
|
66 |
+
fill_mode='nearest'
|
67 |
+
)
|
68 |
+
test_generator = test_datagen.flow_from_directory(test_data_dir, target_size=(IMG_WIDTH, IMG_HEIGHT), batch_size=8, class_mode='categorical', shuffle=False)
|
69 |
+
|
70 |
+
validation_datagen_augmented = ImageDataGenerator(
|
71 |
+
rescale=1./255,
|
72 |
+
rotation_range=20,
|
73 |
+
width_shift_range=0.2,
|
74 |
+
height_shift_range=0.2,
|
75 |
+
shear_range=0.2,
|
76 |
+
zoom_range=0.2,
|
77 |
+
horizontal_flip=True,
|
78 |
+
vertical_flip=False,
|
79 |
+
fill_mode='nearest'
|
80 |
+
)
|
81 |
+
validation_generator = validation_datagen.flow_from_directory(validation_data_dir, target_size=(IMG_WIDTH, IMG_HEIGHT), batch_size=8, class_mode='categorical', shuffle=True)
|
82 |
+
|
83 |
+
class_indices = train_generator.class_indices
|
84 |
+
print(class_indices)
|
85 |
+
|
86 |
+
classes = os.listdir(train_data_dir)
|
87 |
+
for class_name in classes:
|
88 |
+
class_path = os.path.join(train_data_dir, class_name)
|
89 |
+
num_images = len(os.listdir(class_path))
|
90 |
+
print(f"Class: {class_name}, Number of images: {num_images}")
|
91 |
+
|
92 |
+
batch = train_generator.next()
|
93 |
+
for i in range(len(batch[0])):
|
94 |
+
img = batch[0][i]
|
95 |
+
label = batch[1][i]
|
96 |
+
height, width, channels = img.shape
|
97 |
+
print(f"Image {i+1} - Shape: {width}x{height}x{channels}, Label: {label}")
|
98 |
+
|
99 |
+
classes = os.listdir(test_data_dir)
|
100 |
+
for class_name in classes:
|
101 |
+
class_path = os.path.join(test_data_dir, class_name)
|
102 |
+
num_images = len(os.listdir(class_path))
|
103 |
+
print(f"Class: {class_name}, Number of images: {num_images}")
|
104 |
+
|
105 |
+
batch = test_generator.next()
|
106 |
+
for i in range(len(batch[0])):
|
107 |
+
img = batch[0][i]
|
108 |
+
label = batch[1][i]
|
109 |
+
height, width, channels = img.shape
|
110 |
+
print(f"Image {i+1} - Shape: {width}x{height}x{channels}, Label: {label}")
|
111 |
+
|
112 |
+
classes = os.listdir(validation_data_dir)
|
113 |
+
for class_name in classes:
|
114 |
+
class_path = os.path.join(validation_data_dir, class_name)
|
115 |
+
num_images = len(os.listdir(class_path))
|
116 |
+
print(f"Class: {class_name}, Number of images: {num_images}")
|
117 |
+
|
118 |
+
batch = validation_generator.next()
|
119 |
+
for i in range(len(batch[0])):
|
120 |
+
img = batch[0][i]
|
121 |
+
label = batch[1][i]
|
122 |
+
height, width, channels = img.shape
|
123 |
+
print(f"Image {i+1} - Shape: {width}x{height}x{channels}, Label: {label}")
|
124 |
+
|
125 |
+
print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT available")
|
126 |
+
if tf.config.list_physical_devices('GPU'):
|
127 |
+
tf.config.experimental.set_memory_growth(tf.config.list_physical_devices('GPU')[0], True)
|
128 |
+
print("GPU device configured")
|
129 |
+
else:
|
130 |
+
print("No GPU device found")
|
131 |
+
|
132 |
+
from tensorflow.keras.callbacks import ModelCheckpoint
|
133 |
+
model_dir = '/kaggle/working/Checkpoints_densenet201'
|
134 |
+
if not os.path.exists(model_dir):
|
135 |
+
os.makedirs(model_dir)
|
136 |
+
checkpoint_path = model_dir + '/cp.ckpt'
|
137 |
+
checkpoint_dir = os.path.dirname(checkpoint_path)
|
138 |
+
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, save_best_only=True, monitor="val_accuracy", mode="max", verbose=1)
|
139 |
+
|
140 |
+
checkpoint_path
|
141 |
+
|
142 |
+
from tensorflow.keras import models, layers, optimizers
|
143 |
+
|
144 |
+
def create_model(summary=True):
|
145 |
+
new_input = Input(shape=(IMG_WIDTH, IMG_HEIGHT, 3))
|
146 |
+
base_model = DenseNet201(weights='imagenet', include_top=False, input_tensor=new_input)
|
147 |
+
flat1 = Flatten()(base_model.layers[-1].output)
|
148 |
+
output = Dense(2, activation='softmax')(flat1)
|
149 |
+
model = Model(inputs=base_model.inputs, outputs=output)
|
150 |
+
model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy'])
|
151 |
+
if summary:
|
152 |
+
print(model.summary())
|
153 |
+
return model
|
154 |
+
|
155 |
+
model = create_model()
|
156 |
+
|
157 |
+
history = model.fit(train_generator, steps_per_epoch=20, epochs=20, validation_data=validation_generator, validation_steps=25, callbacks=[cp_callback])
|
158 |
+
evaluation = model.evaluate(train_generator)
|
159 |
+
print(f"Test Accuracy: {evaluation[1] * 100:.2f}%")
|
160 |
+
|
161 |
+
initial_epoch = 0
|
162 |
+
saved_history = {
|
163 |
+
'loss': history.history['loss'],
|
164 |
+
'accuracy': history.history['accuracy'],
|
165 |
+
'val_loss': history.history['val_loss'],
|
166 |
+
'val_accuracy': history.history['val_accuracy'],
|
167 |
+
}
|
168 |
+
|
169 |
+
np.save("/kaggle/working/saved_D201history.npy", saved_history)
|
170 |
+
|
171 |
+
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
|
172 |
+
print(latest_checkpoint)
|
173 |
+
if latest_checkpoint is not None:
|
174 |
+
loaded_model = create_model(summary=True)
|
175 |
+
status = loaded_model.load_weights(latest_checkpoint)
|
176 |
+
status.expect_partial()
|
177 |
+
else:
|
178 |
+
print("No checkpoint file found in the specified directory.")
|
179 |
+
|
180 |
+
previous_history = np.load("/kaggle/working/saved_D201history.npy", allow_pickle=True).item()
|
181 |
+
initial_epoch = len(previous_history['loss'])
|
182 |
+
print(initial_epoch)
|
183 |
+
|
184 |
+
loaded_model.compile(optimizer=Adam(learning_rate=1e-5), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy'])
|
185 |
+
new_history = loaded_model.fit(
|
186 |
+
train_generator,
|
187 |
+
steps_per_epoch=20,
|
188 |
+
epochs=20,
|
189 |
+
initial_epoch=initial_epoch,
|
190 |
+
validation_data=validation_generator,
|
191 |
+
validation_steps=30,
|
192 |
+
callbacks=[cp_callback]
|
193 |
+
)
|
194 |
+
|
195 |
+
import matplotlib.pyplot as plt
|
196 |
+
from matplotlib.lines import Line2D
|
197 |
+
from matplotlib.legend_handler import HandlerLine2D
|
198 |
+
import numpy as np
|
199 |
+
|
200 |
+
plt.figure(figsize=(10, 6))
|
201 |
+
train_loss, = plt.plot(previous_history['loss'], label='Train Loss', color='blue')
|
202 |
+
val_loss, = plt.plot(previous_history['val_loss'], label='Validation Loss', color='orange')
|
203 |
+
train_accuracy, = plt.plot(previous_history['accuracy'], label='Train Accuracy', color='green')
|
204 |
+
val_accuracy, = plt.plot(previous_history['val_accuracy'], label='Validation Accuracy', color='red')
|
205 |
+
plt.title('Model Performance during Training', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12},pad=10)
|
206 |
+
plt.xlabel('No. of Epochs', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
207 |
+
plt.xticks(np.linspace(0, 150, num=16), fontname='Serif', weight='bold')
|
208 |
+
plt.yticks(np.linspace(0, 5, num=11), fontname='Serif', weight='bold')
|
209 |
+
plt.xlim(0, 150)
|
210 |
+
plt.ylim(0, 5)
|
211 |
+
legend_lines = [
|
212 |
+
Line2D([0], [0], color='blue', lw=3),
|
213 |
+
Line2D([0], [0], color='orange', lw=3),
|
214 |
+
Line2D([0], [0], color='green', lw=3),
|
215 |
+
Line2D([0], [0], color='red', lw=3)
|
216 |
+
]
|
217 |
+
plt.legend(legend_lines, ['Train Loss', 'Validation Loss', 'Train Accuracy', 'Validation Accuracy'],
|
218 |
+
loc='lower center', bbox_to_anchor=(0.5, 1.1), ncol=5,
|
219 |
+
prop={'family': 'Serif', 'weight': 'bold', 'size': 8}, frameon=False,
|
220 |
+
handler_map={Line2D: HandlerLine2D(numpoints=5)})
|
221 |
+
plt.gca().xaxis.labelpad = 10
|
222 |
+
plt.gca().spines['top'].set_visible(False)
|
223 |
+
plt.gca().spines['right'].set_visible(False)
|
224 |
+
plt.tight_layout()
|
225 |
+
plt.show()
|
226 |
+
|
227 |
+
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
|
228 |
+
print(checkpoint_dir)
|
229 |
+
if latest_checkpoint is not None:
|
230 |
+
loaded_model = create_model(summary=True)
|
231 |
+
status = loaded_model.load_weights(latest_checkpoint)
|
232 |
+
status.expect_partial()
|
233 |
+
else:
|
234 |
+
print("No checkpoint file found in the specified directory.")
|
235 |
+
|
236 |
+
loaded_model.compile(optimizer=Adam(learning_rate=1e-3), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy'])
|
237 |
+
|
238 |
+
test_loss, test_acc = loaded_model.evaluate(test_generator)
|
239 |
+
print(f"Test Accuracy: {test_acc}")
|
240 |
+
|
241 |
+
# Commented out IPython magic to ensure Python compatibility.
|
242 |
+
# %whos
|
243 |
+
|
244 |
+
true_classes = [1, 0, 1, 1, 0]
|
245 |
+
predicted_classes = [1, 1, 0, 1, 0]
|
246 |
+
print(f"Accuracy: {accuracy_score(true_classes, predicted_classes)}")
|
247 |
+
print(f"Precision: {precision_score(true_classes, predicted_classes)}")
|
248 |
+
print(f"Recall: {recall_score(true_classes, predicted_classes)}")
|
249 |
+
print(f"F1 Score: {f1_score(true_classes, predicted_classes)}")
|
250 |
+
print(f"Log Loss: {log_loss(true_classes, predicted_classes)}")
|
251 |
+
print(f"Jaccard Score: {jaccard_score(true_classes, predicted_classes)}")
|
252 |
+
|
253 |
+
print("\nClassification Report:")
|
254 |
+
print(classification_report(true_classes, predicted_classes,digits=4))
|
255 |
+
|
256 |
+
conf_matrix = confusion_matrix(true_classes, predicted_classes)
|
257 |
+
plt.figure(figsize=(6, 4.5))
|
258 |
+
custom_palette = sns.color_palette(palette='blend:#7AB,#EDA')
|
259 |
+
font = {'family': 'Serif', 'weight': 'bold', 'size': 12}
|
260 |
+
heatmap = sns.heatmap(conf_matrix, annot=True, fmt='d', cmap=custom_palette,vmin=0,vmax=350,
|
261 |
+
xticklabels=['Fractured', 'Non_fractured'], yticklabels=['Fractured', 'Non_fractured'],annot_kws={"family": "Serif",'weight': 'bold', 'size': 12})
|
262 |
+
heatmap.set_xlabel('Predicted Labels', fontdict=font)
|
263 |
+
heatmap.set_ylabel('True Labels', fontdict=font)
|
264 |
+
heatmap.set_title('Fracture Classification', fontdict=font, pad=12)
|
265 |
+
heatmap.set_xticklabels(heatmap.get_xticklabels(), fontname='Serif', fontsize=12)
|
266 |
+
heatmap.set_yticklabels(heatmap.get_yticklabels(), fontname='Serif', fontsize=12)
|
267 |
+
cbar = heatmap.collections[0].colorbar
|
268 |
+
cbar.set_label('Count', fontdict=font)
|
269 |
+
cbar.ax.tick_params(labelsize=10)
|
270 |
+
plt.gca().xaxis.labelpad = 10
|
271 |
+
plt.tight_layout()
|
272 |
+
plt.show()
|
273 |
+
|
274 |
+
import numpy as np
|
275 |
+
|
276 |
+
print(type(true_classes))
|
277 |
+
print(type(predictions))
|
278 |
+
|
279 |
+
!pip install scikit-learn
|
280 |
+
!pip install matplotlib
|
281 |
+
|
282 |
+
from sklearn.metrics import roc_curve, roc_auc_score
|
283 |
+
import matplotlib.pyplot as plt
|
284 |
+
from matplotlib.patches import Patch
|
285 |
+
|
286 |
+
print(type(predictions))
|
287 |
+
|
288 |
+
predictions = np.array(predictions)
|
289 |
+
|
290 |
+
def save_and_display_gradcam(img_path, heatmap, alpha=0.7):
|
291 |
+
img = cv2.imread(img_path)
|
292 |
+
img = cv2.resize(img, (299, 299))
|
293 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
294 |
+
heatmap = np.uint8(255 * heatmap)
|
295 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
|
296 |
+
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
|
297 |
+
plt.figure(figsize=(4, 4))
|
298 |
+
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
|
299 |
+
plt.title('GradCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
300 |
+
plt.axis('off')
|
301 |
+
plt.tight_layout()
|
302 |
+
plt.show()
|
303 |
+
|
304 |
+
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
|
305 |
+
model.layers[-1].activation = None
|
306 |
+
grad_model = tf.keras.models.Model(
|
307 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
308 |
+
)
|
309 |
+
with tf.GradientTape() as tape:
|
310 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
311 |
+
if pred_index is None:
|
312 |
+
pred_index = tf.argmax(preds[0])
|
313 |
+
class_channel = preds[:, pred_index]
|
314 |
+
grads = tape.gradient(class_channel, last_conv_layer_output)
|
315 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
316 |
+
last_conv_layer_output = last_conv_layer_output[0]
|
317 |
+
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
|
318 |
+
heatmap = tf.squeeze(heatmap)
|
319 |
+
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
|
320 |
+
return heatmap.numpy()
|
321 |
+
|
322 |
+
def make_prediction_and_visualize_():
|
323 |
+
img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
|
324 |
+
img = cv2.imread(img_path)
|
325 |
+
img = cv2.resize(img, (299, 299))
|
326 |
+
rescaled_img = img/255.0
|
327 |
+
batch_pred = np.expand_dims(rescaled_img, 0)
|
328 |
+
last_conv_layer_name = 'conv5_block32_concat'
|
329 |
+
heatmap = make_gradcam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
|
330 |
+
save_and_display_gradcam(img_path, heatmap)
|
331 |
+
make_prediction_and_visualize_()
|
332 |
+
|
333 |
+
def save_and_display_gradcam_plusplus(img_path, heatmap, alpha=0.7):
|
334 |
+
img = cv2.imread(img_path)
|
335 |
+
img = cv2.resize(img, (299, 299))
|
336 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
337 |
+
heatmap = np.uint8(255 * heatmap)
|
338 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
|
339 |
+
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
|
340 |
+
plt.figure(figsize=(4, 4))
|
341 |
+
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
|
342 |
+
plt.title('GradCAM++', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
343 |
+
plt.axis('off')
|
344 |
+
plt.tight_layout()
|
345 |
+
plt.show()
|
346 |
+
|
347 |
+
def make_gradcam_plusplus_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
|
348 |
+
model.layers[-1].activation = None
|
349 |
+
grad_model = tf.keras.models.Model(
|
350 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
351 |
+
)
|
352 |
+
with tf.GradientTape() as tape:
|
353 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
354 |
+
if pred_index is None:
|
355 |
+
pred_index = tf.argmax(preds[0])
|
356 |
+
class_output = preds[:, pred_index]
|
357 |
+
conv_output = last_conv_layer_output[0]
|
358 |
+
grads = tape.gradient(class_output, last_conv_layer_output)
|
359 |
+
pooled_grads = tf.reduce_mean(grads[0], axis=(0, 1, 2))
|
360 |
+
last_conv_layer_output = last_conv_layer_output[0]
|
361 |
+
guided_grads = tf.cast(last_conv_layer_output > 0, 'float32') * grads[0]
|
362 |
+
weights = tf.reduce_mean(guided_grads, axis=(0, 1))
|
363 |
+
heatmap = tf.reduce_sum(tf.multiply(weights, last_conv_layer_output), axis=-1)
|
364 |
+
heatmap = tf.maximum(heatmap, 0) / tf.reduce_max(heatmap)
|
365 |
+
return heatmap.numpy()
|
366 |
+
|
367 |
+
def make_prediction_and_visualize_gradcam_plusplus():
|
368 |
+
img_path = '/content/drive/MyDrive/testing/not_fractured/1-rotated1-rotated1-rotated1-rotated1.jpg'
|
369 |
+
img = cv2.imread(img_path)
|
370 |
+
img = cv2.resize(img, (299, 299))
|
371 |
+
rescaled_img = img / 255.0
|
372 |
+
batch_pred = np.expand_dims(rescaled_img, 0)
|
373 |
+
last_conv_layer_name = 'conv5_block32_concat'
|
374 |
+
heatmap = make_gradcam_plusplus_heatmap(batch_pred, loaded_model, last_conv_layer_name)
|
375 |
+
save_and_display_gradcam_plusplus(img_path, heatmap)
|
376 |
+
make_prediction_and_visualize_gradcam_plusplus()
|
377 |
+
|
378 |
+
def save_and_display_scorecam(img_path, heatmap, alpha=0.7):
|
379 |
+
img = cv2.imread(img_path)
|
380 |
+
img = cv2.resize(img, (299, 299))
|
381 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
382 |
+
heatmap = np.uint8(255 * heatmap)
|
383 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
|
384 |
+
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
|
385 |
+
plt.figure(figsize=(4, 4))
|
386 |
+
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
|
387 |
+
plt.title('ScoreCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
388 |
+
plt.axis('off')
|
389 |
+
plt.tight_layout()
|
390 |
+
plt.show()
|
391 |
+
|
392 |
+
import tensorflow as tf
|
393 |
+
def make_scorecam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
|
394 |
+
model.layers[-1].activation = None
|
395 |
+
grad_model = tf.keras.models.Model(
|
396 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
397 |
+
)
|
398 |
+
with tf.GradientTape() as tape:
|
399 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
400 |
+
if pred_index is None:
|
401 |
+
pred_index = tf.argmax(preds[0])
|
402 |
+
class_output = preds[:, pred_index]
|
403 |
+
conv_output = last_conv_layer_output[0]
|
404 |
+
grads = tape.gradient(class_output, last_conv_layer_output)
|
405 |
+
guided_grads = tf.cast(grads[0] > 0, 'float32') * grads[0]
|
406 |
+
weights = tf.reduce_mean(guided_grads, axis=(0, 1))
|
407 |
+
cam = tf.reduce_sum(tf.multiply(weights, conv_output), axis=-1)
|
408 |
+
cam = tf.maximum(cam, 0)
|
409 |
+
cam /= tf.reduce_max(cam)
|
410 |
+
return cam.numpy()
|
411 |
+
|
412 |
+
def make_prediction_and_visualize_scorecam():
|
413 |
+
img_path = '/content/drive/MyDrive/BoneFractureDataset/training/fractured/10.jpg'
|
414 |
+
img = cv2.imread(img_path)
|
415 |
+
img = cv2.resize(img, (299, 299))
|
416 |
+
rescaled_img = img/255.0
|
417 |
+
batch_pred = np.expand_dims(rescaled_img, 0)
|
418 |
+
last_conv_layer_name = 'conv5_block32_concat'
|
419 |
+
heatmap = make_scorecam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
|
420 |
+
save_and_display_scorecam(img_path, heatmap)
|
421 |
+
make_prediction_and_visualize_scorecam()
|
422 |
+
|
423 |
+
def save_and_display_faster_scorecam(img_path, heatmap, alpha=0.7):
|
424 |
+
img = cv2.imread(img_path)
|
425 |
+
img = cv2.resize(img, (299, 299))
|
426 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
427 |
+
heatmap = np.uint8(255 * heatmap)
|
428 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
|
429 |
+
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
|
430 |
+
plt.figure(figsize=(4, 4))
|
431 |
+
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
|
432 |
+
plt.title('Faster ScoreCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
433 |
+
plt.axis('off')
|
434 |
+
plt.tight_layout()
|
435 |
+
plt.show()
|
436 |
+
|
437 |
+
def faster_scorecam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
|
438 |
+
model.layers[-1].activation = None
|
439 |
+
grad_model = tf.keras.models.Model(
|
440 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
441 |
+
)
|
442 |
+
with tf.GradientTape() as tape:
|
443 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
444 |
+
if pred_index is None:
|
445 |
+
pred_index = tf.argmax(preds[0])
|
446 |
+
class_output = preds[:, pred_index]
|
447 |
+
conv_output = last_conv_layer_output[0]
|
448 |
+
grads = tape.gradient(class_output, last_conv_layer_output)[0]
|
449 |
+
weights = tf.reduce_mean(grads, axis=(0, 1))
|
450 |
+
weights = tf.reshape(weights, (1, 1, -1))
|
451 |
+
conv_output = tf.expand_dims(conv_output, axis=0)
|
452 |
+
conv_output = tf.expand_dims(conv_output, axis=-1)
|
453 |
+
cam = tf.matmul(weights, conv_output)
|
454 |
+
cam = tf.squeeze(cam)
|
455 |
+
cam = tf.maximum(cam, 0)
|
456 |
+
cam /= tf.reduce_max(cam)
|
457 |
+
return cam.numpy()
|
458 |
+
|
459 |
+
def make_prediction_and_visualize_faster_scorecam():
|
460 |
+
img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
|
461 |
+
img = cv2.imread(img_path)
|
462 |
+
img = cv2.resize(img, (299, 299))
|
463 |
+
rescaled_img = img/255.0
|
464 |
+
batch_pred = np.expand_dims(rescaled_img, 0)
|
465 |
+
last_conv_layer_name = 'conv5_block32_concat'
|
466 |
+
heatmap = faster_scorecam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
|
467 |
+
save_and_display_faster_scorecam(img_path, heatmap)
|
468 |
+
make_prediction_and_visualize_faster_scorecam()
|
469 |
+
|
470 |
+
def save_and_display_layercam(img_path, heatmap, alpha=0.7):
|
471 |
+
img = cv2.imread(img_path)
|
472 |
+
img = cv2.resize(img, (299, 299))
|
473 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
474 |
+
heatmap = np.uint8(255 * heatmap)
|
475 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
|
476 |
+
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
|
477 |
+
plt.figure(figsize=(4, 4))
|
478 |
+
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
|
479 |
+
plt.title('LayerCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
480 |
+
plt.axis('off')
|
481 |
+
plt.tight_layout()
|
482 |
+
plt.show()
|
483 |
+
|
484 |
+
import tensorflow as tf
|
485 |
+
def generate_layercam_heatmap(img_array, model, last_conv_layer_name, target_class_index=None):
|
486 |
+
model.layers[-1].activation = None
|
487 |
+
grad_model = tf.keras.models.Model(
|
488 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
489 |
+
)
|
490 |
+
with tf.GradientTape() as tape:
|
491 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
492 |
+
if target_class_index is None:
|
493 |
+
target_class_index = tf.argmax(preds[0])
|
494 |
+
class_output = preds[:, target_class_index]
|
495 |
+
conv_output = last_conv_layer_output[0]
|
496 |
+
grads = tape.gradient(class_output, last_conv_layer_output)[0]
|
497 |
+
weights = tf.reduce_mean(grads, axis=(0, 1))
|
498 |
+
weights = tf.reshape(weights, (1, 1, -1))
|
499 |
+
conv_output = tf.expand_dims(conv_output, axis=0)
|
500 |
+
conv_output = tf.expand_dims(conv_output, axis=-1)
|
501 |
+
cam = tf.matmul(weights, conv_output)
|
502 |
+
cam = tf.squeeze(cam)
|
503 |
+
cam = tf.maximum(cam, 0)
|
504 |
+
cam /= tf.reduce_max(cam)
|
505 |
+
return cam.numpy()
|
506 |
+
|
507 |
+
def make_prediction_and_visualize_layercam():
|
508 |
+
img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
|
509 |
+
img = cv2.imread(img_path)
|
510 |
+
img = cv2.resize(img, (299, 299))
|
511 |
+
rescaled_img = img/255.0
|
512 |
+
batch_pred = np.expand_dims(rescaled_img, 0)
|
513 |
+
last_conv_layer_name = 'conv5_block32_concat'
|
514 |
+
heatmap = generate_layercam_heatmap(batch_pred, loaded_model, last_conv_layer_name)
|
515 |
+
save_and_display_layercam(img_path, heatmap)
|
516 |
+
make_prediction_and_visualize_layercam()
|
517 |
+
|
518 |
+
def save_and_display_saliency_map(img_path, saliency_map):
|
519 |
+
img = cv2.imread(img_path)
|
520 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
521 |
+
saliency_map = cv2.resize(saliency_map, (img.shape[1], img.shape[0]))
|
522 |
+
saliency_map = (saliency_map - saliency_map.min()) / (saliency_map.max() - saliency_map.min())
|
523 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * saliency_map), cv2.COLORMAP_JET)
|
524 |
+
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
|
525 |
+
alpha = 0.4
|
526 |
+
blended = cv2.addWeighted(img, alpha, heatmap, 1 - alpha, 0)
|
527 |
+
plt.figure(figsize=(4, 4))
|
528 |
+
plt.imshow(blended)
|
529 |
+
plt.title('Vanilla Saliency', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
530 |
+
plt.axis('off')
|
531 |
+
plt.tight_layout()
|
532 |
+
plt.show()
|
533 |
+
|
534 |
+
def generate_vanilla_saliency_map(img_array, model):
|
535 |
+
img_tensor = tf.convert_to_tensor(img_array)
|
536 |
+
img_tensor = tf.expand_dims(img_tensor, axis=0)
|
537 |
+
with tf.GradientTape() as tape:
|
538 |
+
tape.watch(img_tensor)
|
539 |
+
preds = model(img_tensor)
|
540 |
+
top_pred_index = tf.argmax(preds[0])
|
541 |
+
top_class_score = preds[:, top_pred_index]
|
542 |
+
grads = tape.gradient(top_class_score, img_tensor)
|
543 |
+
saliency_map = tf.abs(grads)
|
544 |
+
saliency_map = tf.reduce_max(saliency_map, axis=-1)
|
545 |
+
return saliency_map[0].numpy()
|
546 |
+
|
547 |
+
def make_prediction_and_visualize_vanilla_saliency():
|
548 |
+
img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
|
549 |
+
img = cv2.imread(img_path)
|
550 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
551 |
+
img = cv2.resize(img, (299, 299))
|
552 |
+
img = img / 255.0
|
553 |
+
saliency_map = generate_vanilla_saliency_map(img, loaded_model)
|
554 |
+
save_and_display_saliency_map(img_path, saliency_map)
|
555 |
+
make_prediction_and_visualize_vanilla_saliency()
|
556 |
+
|
557 |
+
def save_and_display_SmoothGrad(img_path, saliency_map):
|
558 |
+
img = cv2.imread(img_path)
|
559 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
560 |
+
saliency_map = cv2.resize(saliency_map, (img.shape[1], img.shape[0]))
|
561 |
+
saliency_map = (saliency_map - saliency_map.min()) / (saliency_map.max() - saliency_map.min())
|
562 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * saliency_map), cv2.COLORMAP_JET)
|
563 |
+
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
|
564 |
+
alpha = 0.4
|
565 |
+
blended = cv2.addWeighted(img, alpha, heatmap, 1 - alpha, 0)
|
566 |
+
plt.figure(figsize=(4, 4))
|
567 |
+
plt.imshow(blended)
|
568 |
+
plt.title('Smooth Grad', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
569 |
+
plt.axis('off')
|
570 |
+
plt.tight_layout()
|
571 |
+
plt.show()
|
572 |
+
|
573 |
+
def generate_smoothgrad_saliency_map(img_array, model, n=50, sigma=1.0):
|
574 |
+
img_tensor = tf.convert_to_tensor(img_array)
|
575 |
+
img_tensor = tf.expand_dims(img_tensor, axis=0)
|
576 |
+
img_tensor = tf.cast(img_tensor, dtype=tf.float32)
|
577 |
+
with tf.GradientTape() as tape:
|
578 |
+
tape.watch(img_tensor)
|
579 |
+
preds = model(img_tensor)
|
580 |
+
top_pred_index = tf.argmax(preds[0])
|
581 |
+
top_class_score = preds[:, top_pred_index]
|
582 |
+
total_gradients = tf.zeros_like(img_tensor)
|
583 |
+
for _ in range(n):
|
584 |
+
noise = tf.random.normal(shape=img_tensor.shape, mean=0.0, stddev=sigma)
|
585 |
+
perturbed_img = img_tensor + noise
|
586 |
+
with tf.GradientTape() as perturbed_tape:
|
587 |
+
perturbed_tape.watch(perturbed_img)
|
588 |
+
perturbed_preds = model(perturbed_img)
|
589 |
+
perturbed_top_class_score = perturbed_preds[:, top_pred_index]
|
590 |
+
perturbed_grads = perturbed_tape.gradient(perturbed_top_class_score, perturbed_img)
|
591 |
+
total_gradients += perturbed_grads
|
592 |
+
averaged_gradients = total_gradients / n
|
593 |
+
saliency_map = tf.abs(averaged_gradients)
|
594 |
+
saliency_map = tf.reduce_max(saliency_map, axis=-1)
|
595 |
+
return saliency_map[0].numpy()
|
596 |
+
|
597 |
+
def make_prediction_and_visualize_smoothgrad_saliency():
|
598 |
+
img_path = '/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg'
|
599 |
+
img = cv2.imread(img_path)
|
600 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
601 |
+
img = cv2.resize(img, (299, 299))
|
602 |
+
img = img / 255.0
|
603 |
+
heatmap = generate_smoothgrad_saliency_map(img, loaded_model)
|
604 |
+
save_and_display_SmoothGrad(img_path, heatmap)
|
605 |
+
make_prediction_and_visualize_smoothgrad_saliency()
|
606 |
+
|
ResNet/ResNet.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ResNet/ResNet.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""ResNet50.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Ztagc2mpxc2YEeFMut7EwFhL8SFY2gAm
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
from PIL import Image
|
13 |
+
import pickle
|
14 |
+
from sklearn.utils import shuffle
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
17 |
+
from tensorflow.keras.models import Sequential
|
18 |
+
from tensorflow.keras.layers import Dense
|
19 |
+
import os
|
20 |
+
from tensorflow.keras.applications import ResNet50
|
21 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
22 |
+
|
23 |
+
datagen = ImageDataGenerator(rescale=1.0/255.0, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')
|
24 |
+
|
25 |
+
batch_size = 20
|
26 |
+
train_data_dir = '/content/drive/MyDrive/BoneFractureDataset/training'
|
27 |
+
validation_data_dir = '/content/drive/MyDrive/BoneFractureDataset/testing'
|
28 |
+
train_generator = datagen.flow_from_directory( train_data_dir,
|
29 |
+
target_size=(224, 224),
|
30 |
+
batch_size=batch_size,
|
31 |
+
class_mode='binary',
|
32 |
+
shuffle=True )
|
33 |
+
validation_generator = datagen.flow_from_directory(
|
34 |
+
validation_data_dir,
|
35 |
+
target_size=(224, 224),
|
36 |
+
batch_size=batch_size,
|
37 |
+
class_mode='binary',
|
38 |
+
shuffle=False
|
39 |
+
)
|
40 |
+
|
41 |
+
!ls /kaggle/input/resnet50-weights/
|
42 |
+
|
43 |
+
!stat /kaggle/input/resnet50-weights/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
|
44 |
+
|
45 |
+
!wget https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 -P /kaggle/input/resnet50-weights/
|
46 |
+
|
47 |
+
!cat /kaggle/input/resnet50-weights/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
|
48 |
+
|
49 |
+
!ls -l /kaggle/input/resnet50-weights/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
|
50 |
+
|
51 |
+
!wget https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 -P /kaggle/input/resnet50-weights
|
52 |
+
|
53 |
+
resModel = Sequential()
|
54 |
+
resModel.add(ResNet50(
|
55 |
+
include_top=False,
|
56 |
+
pooling='avg',
|
57 |
+
weights=None,
|
58 |
+
))
|
59 |
+
resModel.add(Dense(1, activation='sigmoid'))
|
60 |
+
for layer in resModel.layers[0].layers[-50:]:
|
61 |
+
layer.trainable = True
|
62 |
+
|
63 |
+
from tensorflow.keras.optimizers import Adam
|
64 |
+
from tensorflow.keras.callbacks import ReduceLROnPlateau
|
65 |
+
optimizer = Adam(learning_rate=0.001)
|
66 |
+
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.0001)
|
67 |
+
resModel.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
|
68 |
+
epochs = 10
|
69 |
+
history = resModel.fit(train_generator, epochs=epochs, validation_data=validation_generator, callbacks=[reduce_lr])
|
70 |
+
evaluation = resModel.evaluate(train_generator)
|
71 |
+
print(f"Test Accuracy: {evaluation[1] * 100:.2f}%")
|
72 |
+
|
73 |
+
initial_epoch = 0
|
74 |
+
saved_history = {
|
75 |
+
'loss': history.history['loss'],
|
76 |
+
'accuracy': history.history['accuracy'],
|
77 |
+
'val_loss': history.history['val_loss'],
|
78 |
+
'val_accuracy': history.history['val_accuracy'],
|
79 |
+
}
|
80 |
+
|
81 |
+
import matplotlib.pyplot as plt
|
82 |
+
from matplotlib.lines import Line2D
|
83 |
+
from matplotlib.legend_handler import HandlerLine2D
|
84 |
+
import numpy as np
|
85 |
+
|
86 |
+
initial_epoch = 10
|
87 |
+
saved_history = {
|
88 |
+
'loss': history.history['loss'],
|
89 |
+
'accuracy': history.history['accuracy'],
|
90 |
+
'val_loss': history.history['val_loss'],
|
91 |
+
'val_accuracy': history.history['val_accuracy'],
|
92 |
+
}
|
93 |
+
|
94 |
+
!ls /kaggle/working
|
95 |
+
|
96 |
+
!ls -l /kaggle/working/saved_D201history.npy
|
97 |
+
|
98 |
+
!find / -name saved_D201history.npy
|
99 |
+
|
100 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, log_loss, jaccard_score
|
101 |
+
true_classes = [1, 0, 1, 1, 0]
|
102 |
+
predicted_classes = [1, 1, 0, 1, 0]
|
103 |
+
print(f"Accuracy: {accuracy_score(true_classes, predicted_classes)}")
|
104 |
+
print(f"Precision: {precision_score(true_classes, predicted_classes)}")
|
105 |
+
print(f"Recall: {recall_score(true_classes, predicted_classes)}")
|
106 |
+
print(f"F1 Score: {f1_score(true_classes, predicted_classes)}")
|
107 |
+
print(f"Log Loss: {log_loss(true_classes, predicted_classes)}")
|
108 |
+
print(f"Jaccard Score: {jaccard_score(true_classes, predicted_classes)}")
|
109 |
+
|
110 |
+
from sklearn.metrics import classification_report
|
111 |
+
|
112 |
+
print("\nClassification Report:")
|
113 |
+
print(classification_report(true_classes, predicted_classes,digits=4))
|
114 |
+
|
115 |
+
from sklearn.metrics import roc_curve, roc_auc_score
|
116 |
+
import matplotlib.pyplot as plt
|
117 |
+
from matplotlib.patches import Patch
|
118 |
+
|
119 |
+
def save_and_display_gradcam(img_path, heatmap, alpha=0.7):
|
120 |
+
img = cv2.imread(img_path)
|
121 |
+
img = cv2.resize(img, (299, 299))
|
122 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
123 |
+
heatmap = np.uint8(255 * heatmap)
|
124 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_PLASMA)
|
125 |
+
superimposed_img = cv2.addWeighted(heatmap, alpha, img, 1 - alpha, 0)
|
126 |
+
plt.figure(figsize=(4, 4))
|
127 |
+
plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
|
128 |
+
plt.title('GradCAM', fontdict={'family': 'Serif', 'weight': 'bold', 'size': 12})
|
129 |
+
plt.axis('off')
|
130 |
+
plt.tight_layout()
|
131 |
+
plt.show()
|
132 |
+
|
133 |
+
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
|
134 |
+
model.layers[-1].activation = None
|
135 |
+
grad_model = tf.keras.models.Model(
|
136 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
137 |
+
)
|
138 |
+
with tf.GradientTape() as tape:
|
139 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
140 |
+
if pred_index is None:
|
141 |
+
pred_index = tf.argmax(preds[0])
|
142 |
+
class_channel = preds[:, pred_index]
|
143 |
+
grads = tape.gradient(class_channel, last_conv_layer_output)
|
144 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
145 |
+
last_conv_layer_output = last_conv_layer_output[0]
|
146 |
+
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
|
147 |
+
heatmap = tf.squeeze(heatmap)
|
148 |
+
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
|
149 |
+
return heatmap.numpy()
|
150 |
+
|
151 |
+
import cv2
|
152 |
+
|
153 |
+
abcd = cv2.imread('/content/drive/MyDrive/BoneFractureDataset/testing/fractured/3.jpg')
|
154 |
+
|
155 |
+
plt.imshow(abcd)
|