Update README.md
Browse files
README.md
CHANGED
@@ -42,7 +42,14 @@ This llama model was trained 2x faster with [Unsloth](https://github.com/unsloth
|
|
42 |
- Training Duration: 46 minutes
|
43 |
|
44 |
## Performance
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
## .jsonl File Output Usage
|
48 |
To generate the output file in Google Colaboratory, use the following script:
|
@@ -74,7 +81,7 @@ model_id = "llm-jp/llm-jp-3-13b"
|
|
74 |
adapter_id = "umizkimt/llm-jp-3-13b-it_lora"
|
75 |
|
76 |
# Hugging Face Token を指定。
|
77 |
-
HF_TOKEN = "<
|
78 |
|
79 |
# unslothのFastLanguageModelで元のモデルをロード。
|
80 |
dtype = None # Noneにしておけば自動で設定
|
|
|
42 |
- Training Duration: 46 minutes
|
43 |
|
44 |
## Performance
|
45 |
+
|Metric|Base Model|Fine-Tuned Model|
|
46 |
+
|---|---|---|
|
47 |
+
|Score (Gemini 1.5)|2.21|3.01|
|
48 |
+
|Inference Time (100 examples)|38 minutes|9 minutes|
|
49 |
+
|
50 |
+
- Score Type: Provisional score using Gemini 1.5 (for competition purposes)
|
51 |
+
- Evaluation Dataset: elyza-tasks-100-TV_0.jsonl
|
52 |
+
- Platform: Google Colaboratory (T4 GPU)
|
53 |
|
54 |
## .jsonl File Output Usage
|
55 |
To generate the output file in Google Colaboratory, use the following script:
|
|
|
81 |
adapter_id = "umizkimt/llm-jp-3-13b-it_lora"
|
82 |
|
83 |
# Hugging Face Token を指定。
|
84 |
+
HF_TOKEN = "<YOUR_HF_TOKEN>"
|
85 |
|
86 |
# unslothのFastLanguageModelで元のモデルをロード。
|
87 |
dtype = None # Noneにしておけば自動で設定
|