umn-cyber/indobert-hoax-detection
Browse files- README.md +5 -5
- all_results.json +16 -0
- eval_results.json +11 -0
- test_results.json +11 -0
- train_results.json +8 -0
README.md
CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0543
|
25 |
+
- Accuracy: 0.9848
|
26 |
+
- F1: 0.9840
|
27 |
+
- Precision: 0.9857
|
28 |
+
- Recall: 0.9822
|
29 |
|
30 |
## Model description
|
31 |
|
all_results.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9847767253044655,
|
4 |
+
"eval_f1": 0.9839686498040613,
|
5 |
+
"eval_loss": 0.05431538447737694,
|
6 |
+
"eval_precision": 0.9857244825124911,
|
7 |
+
"eval_recall": 0.9822190611664295,
|
8 |
+
"eval_runtime": 82.271,
|
9 |
+
"eval_samples_per_second": 35.93,
|
10 |
+
"eval_steps_per_second": 1.13,
|
11 |
+
"total_flos": 3.11005644392448e+16,
|
12 |
+
"train_loss": 0.03474135211743263,
|
13 |
+
"train_runtime": 19879.8681,
|
14 |
+
"train_samples_per_second": 5.946,
|
15 |
+
"train_steps_per_second": 0.186
|
16 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9861252115059221,
|
4 |
+
"eval_f1": 0.9854144432586268,
|
5 |
+
"eval_loss": 0.049318719655275345,
|
6 |
+
"eval_precision": 0.9857651245551602,
|
7 |
+
"eval_recall": 0.9850640113798008,
|
8 |
+
"eval_runtime": 82.1767,
|
9 |
+
"eval_samples_per_second": 35.959,
|
10 |
+
"eval_steps_per_second": 1.132
|
11 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9847767253044655,
|
4 |
+
"eval_f1": 0.9839686498040613,
|
5 |
+
"eval_loss": 0.05431538447737694,
|
6 |
+
"eval_precision": 0.9857244825124911,
|
7 |
+
"eval_recall": 0.9822190611664295,
|
8 |
+
"eval_runtime": 82.271,
|
9 |
+
"eval_samples_per_second": 35.93,
|
10 |
+
"eval_steps_per_second": 1.13
|
11 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 3.11005644392448e+16,
|
4 |
+
"train_loss": 0.03474135211743263,
|
5 |
+
"train_runtime": 19879.8681,
|
6 |
+
"train_samples_per_second": 5.946,
|
7 |
+
"train_steps_per_second": 0.186
|
8 |
+
}
|