umn-cyber/indobert-hoax-detection
Browse files- README.md +5 -5
- all_results.json +14 -14
- eval_results.json +9 -9
- test_results.json +9 -9
- train_results.json +6 -6
README.md
CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0556
|
25 |
+
- Accuracy: 0.9831
|
26 |
+
- F1: 0.9823
|
27 |
+
- Precision: 0.9781
|
28 |
+
- Recall: 0.9865
|
29 |
|
30 |
## Model description
|
31 |
|
all_results.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second": 35.
|
10 |
-
"eval_steps_per_second": 1.
|
11 |
-
"total_flos":
|
12 |
-
"train_loss": 0.
|
13 |
-
"train_runtime":
|
14 |
-
"train_samples_per_second": 5.
|
15 |
-
"train_steps_per_second": 0.
|
16 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.983085250338295,
|
4 |
+
"eval_f1": 0.9822946175637394,
|
5 |
+
"eval_loss": 0.055622417479753494,
|
6 |
+
"eval_precision": 0.9781382228490832,
|
7 |
+
"eval_recall": 0.9864864864864865,
|
8 |
+
"eval_runtime": 83.5515,
|
9 |
+
"eval_samples_per_second": 35.379,
|
10 |
+
"eval_steps_per_second": 1.113,
|
11 |
+
"total_flos": 1.86598360461312e+16,
|
12 |
+
"train_loss": 0.0482267698942674,
|
13 |
+
"train_runtime": 11974.8731,
|
14 |
+
"train_samples_per_second": 5.922,
|
15 |
+
"train_steps_per_second": 0.185
|
16 |
}
|
eval_results.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second": 35.
|
10 |
-
"eval_steps_per_second": 1.
|
11 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.9868020304568528,
|
4 |
+
"eval_f1": 0.9861946902654867,
|
5 |
+
"eval_loss": 0.04358154907822609,
|
6 |
+
"eval_precision": 0.981677237491191,
|
7 |
+
"eval_recall": 0.9907539118065434,
|
8 |
+
"eval_runtime": 83.335,
|
9 |
+
"eval_samples_per_second": 35.459,
|
10 |
+
"eval_steps_per_second": 1.116
|
11 |
}
|
test_results.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second": 35.
|
10 |
-
"eval_steps_per_second": 1.
|
11 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.983085250338295,
|
4 |
+
"eval_f1": 0.9822946175637394,
|
5 |
+
"eval_loss": 0.055622417479753494,
|
6 |
+
"eval_precision": 0.9781382228490832,
|
7 |
+
"eval_recall": 0.9864864864864865,
|
8 |
+
"eval_runtime": 83.5515,
|
9 |
+
"eval_samples_per_second": 35.379,
|
10 |
+
"eval_steps_per_second": 1.113
|
11 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 5.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"total_flos": 1.86598360461312e+16,
|
4 |
+
"train_loss": 0.0482267698942674,
|
5 |
+
"train_runtime": 11974.8731,
|
6 |
+
"train_samples_per_second": 5.922,
|
7 |
+
"train_steps_per_second": 0.185
|
8 |
}
|