File size: 2,999 Bytes
2271450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
datasets:
- unicamp-dl/mmarco
language:
- pt
pipeline_tag: text2text-generation
base_model: unicamp-dl/ptt5-v2-large
---
## Introduction
MonoPTT5 models are T5 rerankers for the Portuguese language. Starting from [ptt5-v2 checkpoints](https://huggingface.co/collections/unicamp-dl/ptt5-v2-666538a650188ba00aa8d2d0), they were trained for 100k steps on a mixture of Portuguese and English data from the mMARCO dataset.
For further information on the training and evaluation of these models, please refer to our paper, [ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language](https://arxiv.org/abs/2008.09144).
## Usage
The easiest way to use our models is through the `rerankers` package. After installing the package using `pip install rerankers[transformers]`, the following code can be used as a minimal working example:
```python
from rerankers import Reranker
query = "O futebol é uma paixão nacional"
docs = [
"O futebol é superestimado e não deveria receber tanta atenção.",
"O futebol é uma parte essencial da cultura brasileira e une as pessoas.",
]
ranker = Reranker(
"unicamp-dl/monoptt5-small",
inputs_template="Pergunta: {query} Documento: {text} Relevante:",
)
# Relevant logging:
# Loading T5Ranker model unicamp-dl/monoptt5-small
# No device set
# Using device cpu
# No dtype set
# Device set to `cpu`, setting dtype to `float32`
# Using dtype torch.float32
# Loading model unicamp-dl/monoptt5-small, this might take a while...
# Using device cpu.
# Using dtype torch.float32.
# T5 true token set to ▁Sim
# T5 false token set to ▁Não
# Returning normalised scores...
# Inputs template set to Pergunta: {query} Documento: {text} Relevante:
results = ranker.rerank(query, docs)
# Results should be something like (can vary depending on the model, the example below uses the "unicamp-dl/monoptt5-small" model)
RankedResults(
results=[
Result(
document=Document(
text="O futebol é uma parte essencial da cultura brasileira e une as pessoas.",
doc_id=1,
metadata={},
),
score=0.91943359375,
rank=1,
),
Result(
document=Document(
text="O futebol é superestimado e não deveria receber tanta atenção.",
doc_id=0,
metadata={},
),
score=0.0267486572265625,
rank=2,
),
],
query="O futebol é uma paixão nacional",
has_scores=True,
)
```
For additional configurations and more advanced usage, consult the rerankers documentation.
# Citation
If you use our models, please cite:
@article{ptt5_2020,
title={PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data},
author={Carmo, Diedre and Piau, Marcos and Campiotti, Israel and Nogueira, Rodrigo and Lotufo, Roberto},
journal={arXiv preprint arXiv:2008.09144},
year={2020}
} |