File size: 1,567 Bytes
2b989c7 16d7ce6 2b989c7 700ab11 2b989c7 563fe30 16d7ce6 2b989c7 563fe30 2b989c7 563fe30 2b989c7 16d7ce6 563fe30 16d7ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
language: pt
license: mit
tags:
- msmarco
- t5
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mt5-base Reranker finetuned on mMARCO
## Introduction
mT5-base-en-pt-msmarco-v1 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model.
Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import T5Tokenizer, MT5ForConditionalGeneration
model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
```
# Citation
If you use mt5-base-en-pt-msmarco-v1, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|