File size: 7,257 Bytes
d43e3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a3ea73
d43e3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a3ea73
 
 
 
 
d43e3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using Newtonsoft.Json;
using System.Text;

/*
 *              Phi 1.5 Inference Code
 *              =======================
 *  
 *  Put this script on the Main Camera
 *  
 *  In Assets/StreamingAssets put:
 *  
 *  phi15.sentis
 *  vocab.json
 *  merges.txt
 * 
 *  Install package com.unity.nuget.newtonsoft-json from packagemanger
 *  Install package com.unity.sentis
 * 
 */


public class RunPhi15 : MonoBehaviour
{
    const BackendType backend = BackendType.GPUCompute;
    //string outputString = "Question: \"What is the capital of France?\"\n Correct answer: \"";
    //string outputString = "The human asked, \"What is your favourite animal?\" so the wise man answered correctly,  \"";
    string outputString = "Once upon a time, there were three";
    //string outputString = "// Javascript function for prime numbers";

    // This is how many tokens you want. It can be adjusted.
    const int maxTokens = 100;

    //Make this smaller for more randomness
    const float predictability = 5;

    //Special tokens
    const int END_OF_TEXT = 50256;

    Ops ops;
    ITensorAllocator allocator;

    //Store the vocabulary
    string[] tokens;

    IWorker engine;

    int currentToken = 0;
    int[] outputTokens = new int[maxTokens];

    // Used for special character decoding
    int[] whiteSpaceCharacters = new int[256];
    int[] encodedCharacters = new int[256];

    bool runInference = false;


    //stop after this many tokens
    const int stopAfter = 200;

    int totalTokens = 0;

    string[] merges;
    Dictionary<string, int> vocab;

    void Start()
    {
        allocator = new TensorCachingAllocator();
        ops = WorkerFactory.CreateOps(backend, allocator);

        SetupWhiteSpaceShifts();

        LoadVocabulary();
       
        Model model = ModelLoader.Load(Application.streamingAssetsPath + "/phi15.sentis");
        engine = WorkerFactory.CreateWorker(backend, model);

        GO(outputString);
    }

    public void GO(string text)
    {
        outputString = text;
        DecodePrompt(outputString);
        runInference = true;
    }

    // Update is called once per frame
    void Update()
    {
        if (runInference)
        {
            RunInference();
        }
    }

    void RunInference()
    {
        using var tokensSoFar = new TensorInt(new TensorShape(1, maxTokens), outputTokens);

        engine.Execute(tokensSoFar);

        var tokensOut = engine.PeekOutput() as TensorFloat;

        using var row = ops.Slice(tokensOut, new[] { currentToken }, new[] { currentToken + 1 }, new[] { 1 }, new[] { 1 });
        using var rowB = ops.Mul(predictability, row);
        using var probs = ops.Softmax(rowB, 2);
        probs.MakeReadable();

        int ID = SelectRandomToken(probs.ToReadOnlyArray());

        if (currentToken >= maxTokens - 1)
        {
            for (int i = 0; i < maxTokens - 1; i++) outputTokens[i] = outputTokens[i + 1];
            currentToken--;
        }

        outputTokens[++currentToken] = ID;
        totalTokens++;

        if (ID == END_OF_TEXT || totalTokens >= stopAfter)
        {
            runInference = false;
        }
        else if (ID < 0 || ID >= tokens.Length)
        {
            // Really we should use the added_tokens.json for this
            outputString += " ";
        }
        else outputString += GetUnicodeText(tokens[ID]);

        Debug.Log(outputString);
    }

    void DecodePrompt(string text)
    {
        var inputTokens = GetTokens(text);

        for(int i = 0; i < inputTokens.Count; i++)
        {
            outputTokens[i] = inputTokens[i];
        }
        currentToken = inputTokens.Count - 1;
    }
   

    void LoadVocabulary()
    {
        var jsonText = File.ReadAllText(Application.streamingAssetsPath + "/vocab.json");
        vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonText);
        tokens = new string[vocab.Count];
        foreach (var item in vocab)
        {
            tokens[item.Value] = item.Key;
        }

        merges = File.ReadAllLines(Application.streamingAssetsPath + "/merges.txt");
    }


    int SelectRandomToken(float[] probs)
    {
        float p = UnityEngine.Random.Range(0, 1f);
        float t = 0;
        for (int i = 0; i < probs.Length; i++)
        {
            t += probs[i];
            if (p < t)
            {
                return i;
            }
        }
        return probs.Length - 1;
    }

    // Translates encoded special characters to Unicode
    string GetUnicodeText(string text)
    {
        var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text));
        return Encoding.UTF8.GetString(bytes);
    }
    string GetASCIIText(string newText)
    {
        var bytes = Encoding.UTF8.GetBytes(newText);
        return ShiftCharacterUp(Encoding.GetEncoding("ISO-8859-1").GetString(bytes));
    }

    string ShiftCharacterDown(string text)
    {
        string outText = "";
        foreach (char letter in text)
        {
            outText += ((int)letter <= 256) ? letter :
                (char)whiteSpaceCharacters[(int)(letter - 256)];
        }
        return outText;
    }

    string ShiftCharacterUp(string text)
    {
        string outText = "";
        foreach (char letter in text)
        {
            outText += (char)encodedCharacters[(int)letter];
        }
        return outText;
    }

    void SetupWhiteSpaceShifts()
    {
        for (int i = 0, n = 0; i < 256; i++)
        {
            encodedCharacters[i] = i;
            if (IsWhiteSpace((char)i))
            {
                encodedCharacters[i] = n + 256;
                whiteSpaceCharacters[n++] = i;
            }
        }
    }

    bool IsWhiteSpace(char c)
    {
        return !(('!' <= c && c <= '~') || ('�' <= c && c <= '�') || ('�' <= c && c <= '�'));
    }

    List<int> GetTokens(string text)
    {
        text = GetASCIIText(text);

        // Start with a list of single characters
        var inputTokens = new List<string>();
        foreach(var letter in text)
        {
            inputTokens.Add(letter.ToString());
        }

        ApplyMerges(inputTokens);

        //Find the ids of the words in the vocab
        var ids = new List<int>();
        foreach(var token in inputTokens)
        {
            if (vocab.TryGetValue(token, out int id))
            {
                ids.Add(id);
            }
        }

        return ids;
    }

    void ApplyMerges(List<string> inputTokens)
    {
        foreach(var merge in merges)
        {
            string[] pair = merge.Split(' ');
            int n = 0;
            while (n >= 0)
            {
                n = inputTokens.IndexOf(pair[0], n);
                if (n != -1 && n < inputTokens.Count - 1 && inputTokens[n + 1] == pair[1])
                {
                    inputTokens[n] += inputTokens[n + 1];
                    inputTokens.RemoveAt(n + 1);
                }
                if (n != -1) n++;
            }
        }
    }

    private void OnDestroy()
    {
        engine?.Dispose();
        ops?.Dispose();
        allocator?.Dispose();
    }
}