File size: 7,051 Bytes
d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 3a3ea73 d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 833095d d43e3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using System.Text;
using FF = Unity.Sentis.Functional;
/*
* Phi1.5 Inference Code
* ===========================
*
* Put this script on the Main Camera
*
* In Assets/StreamingAssets put:
*
* phi15.sentis (or put in asset folder)
* vocab.json
* merges.txt
*
* Install package com.unity.nuget.newtonsoft-json from packagemanger
* Install package com.unity.sentis
*
*/
public class RunPhi15: MonoBehaviour
{
//Drop the tinystories.sentis or onnx file on here if using an asset:
//public ModelAsset asset;
const BackendType backend = BackendType.GPUCompute;
//string outputString = "Once upon a time, there were three bears";
string outputString = "One day an alien came down from Mars. It saw a chicken";
// This is how many tokens you want. It can be adjusted.
const int maxTokens = 100;
//Make this smaller for more randomness
const float predictability = 5f;
//Special tokens
const int END_OF_TEXT = 50256;
//Store the vocabulary
string[] tokens;
IWorker engine;
int currentToken = 0;
int[] outputTokens = new int[maxTokens];
// Used for special character decoding
int[] whiteSpaceCharacters = new int[256];
int[] encodedCharacters = new int[256];
bool runInference = false;
//stop after this many tokens
const int stopAfter = 100;
int totalTokens = 0;
string[] merges;
Dictionary<string, int> vocab;
void Start()
{
SetupWhiteSpaceShifts();
LoadVocabulary();
var model1 = ModelLoader.Load(Path.Join(Application.streamingAssetsPath , "phi15.sentis"));
int outputIndex = model1.outputs.Count - 1;
//var model1 = ModelLoader.Load(asset);
//Create a new model to select the random token:
var model2 = FF.Compile(
(input, currentToken) =>
{
var row = FF.Select(model1.Forward(input)[outputIndex], 1, currentToken);
return FF.Multinomial(predictability * row, 1);
},
(model1.inputs[0], InputDef.Int(new TensorShape()))
);
engine = WorkerFactory.CreateWorker(backend, model2);
DecodePrompt(outputString);
runInference = true;
}
// Update is called once per frame
void Update()
{
if (runInference)
{
RunInference();
}
}
void RunInference()
{
using var tokensSoFar = new TensorInt(new TensorShape(1, maxTokens), outputTokens);
using var index = new TensorInt(currentToken);
engine.Execute(new Dictionary<string, Tensor> { {"input_0", tokensSoFar }, { "input_1", index }});
var probs = engine.PeekOutput() as TensorInt;
//Debug.Log(probs.shape);
probs.CompleteOperationsAndDownload();
int ID = probs[0];
//shift window down if got to the end
if (currentToken >= maxTokens - 1)
{
for (int i = 0; i < maxTokens - 1; i++) outputTokens[i] = outputTokens[i + 1];
currentToken--;
}
outputTokens[++currentToken] = ID;
totalTokens++;
if (ID == END_OF_TEXT || totalTokens >= stopAfter)
{
runInference = false;
}
else if (ID < 0 || ID >= tokens.Length)
{
// Really we should use the added_tokens.json for this
outputString += " ";
}
else outputString += GetUnicodeText(tokens[ID]);
Debug.Log(outputString);
}
void DecodePrompt(string text)
{
var inputTokens = GetTokens(text);
for(int i = 0; i < inputTokens.Count; i++)
{
outputTokens[i] = inputTokens[i];
}
currentToken = inputTokens.Count - 1;
}
void LoadVocabulary()
{
var jsonText = File.ReadAllText(Path.Join(Application.streamingAssetsPath , "vocab.json"));
vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonText);
tokens = new string[vocab.Count];
foreach (var item in vocab)
{
tokens[item.Value] = item.Key;
}
merges = File.ReadAllLines(Path.Join(Application.streamingAssetsPath , "merges.txt"));
}
// Translates encoded special characters to Unicode
string GetUnicodeText(string text)
{
var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text));
return Encoding.UTF8.GetString(bytes);
}
string GetASCIIText(string newText)
{
var bytes = Encoding.UTF8.GetBytes(newText);
return ShiftCharacterUp(Encoding.GetEncoding("ISO-8859-1").GetString(bytes));
}
string ShiftCharacterDown(string text)
{
string outText = "";
foreach (char letter in text)
{
outText += ((int)letter <= 256) ? letter :
(char)whiteSpaceCharacters[(int)(letter - 256)];
}
return outText;
}
string ShiftCharacterUp(string text)
{
string outText = "";
foreach (char letter in text)
{
outText += (char)encodedCharacters[(int)letter];
}
return outText;
}
void SetupWhiteSpaceShifts()
{
for (int i = 0, n = 0; i < 256; i++)
{
encodedCharacters[i] = i;
if (IsWhiteSpace(i))
{
encodedCharacters[i] = n + 256;
whiteSpaceCharacters[n++] = i;
}
}
}
bool IsWhiteSpace(int i)
{
//returns true if it is a whitespace character
return i <= 32 || (i >= 127 && i <= 160) || i == 173;
}
List<int> GetTokens(string text)
{
text = GetASCIIText(text);
// Start with a list of single characters
var inputTokens = new List<string>();
foreach(var letter in text)
{
inputTokens.Add(letter.ToString());
}
ApplyMerges(inputTokens);
//Find the ids of the words in the vocab
var ids = new List<int>();
foreach(var token in inputTokens)
{
if (vocab.TryGetValue(token, out int id))
{
ids.Add(id);
}
}
return ids;
}
void ApplyMerges(List<string> inputTokens)
{
foreach(var merge in merges)
{
string[] pair = merge.Split(' ');
int n = 0;
while (n >= 0)
{
n = inputTokens.IndexOf(pair[0], n);
if (n != -1 && n < inputTokens.Count - 1 && inputTokens[n + 1] == pair[1])
{
inputTokens[n] += inputTokens[n + 1];
inputTokens.RemoveAt(n + 1);
}
if (n != -1) n++;
}
}
}
private void OnDestroy()
{
engine?.Dispose();
}
}
|