unography commited on
Commit
7834186
1 Parent(s): 275a9f9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -172
README.md CHANGED
@@ -1,199 +1,108 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ pipeline_tag: image-to-text
3
+ tags:
4
+ - image-captioning
5
+ languages:
6
+ - en
7
+ license: bsd-3-clause
8
+ widget:
9
+ - src: >-
10
+ https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
11
+ example_title: Savanna
12
+ - src: >-
13
+ https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
14
+ example_title: Football Match
15
+ - src: >-
16
+ https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
17
+ example_title: Airport
18
+ datasets:
19
+ - unography/laion-14k-GPT4V-LIVIS-Captions
20
+ inference:
21
+ parameters:
22
+ max_length: 300
23
  ---
24
 
25
+ # LongCap: Finetuned [BLIP](https://huggingface.co/Salesforce/blip-image-captioning-large) for generating long captions of images, suitable for prompts for text-to-image generation and captioning text-to-image datasets
26
 
 
27
 
28
+ ## Usage
29
 
30
+ You can use this model for conditional and un-conditional image captioning
31
 
32
+ ### Using the Pytorch model
33
 
34
+ #### Running the model on CPU
35
 
36
+ <details>
37
+ <summary> Click to expand </summary>
38
 
39
+ ```python
40
+ import requests
41
+ from PIL import Image
42
+ from transformers import BlipProcessor, BlipForConditionalGeneration
43
 
44
+ processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
45
+ model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap")
 
 
 
 
 
46
 
47
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
48
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
49
 
50
+ inputs = processor(raw_image, return_tensors="pt")
51
+ pixel_values = inputs.pixel_values
52
+ out = model.generate(pixel_values=pixel_values, max_length=250)
53
+ print(processor.decode(out[0], skip_special_tokens=True))
54
+ >>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue.
55
 
56
+ ```
57
+ </details>
 
58
 
59
+ #### Running the model on GPU
60
 
61
+ ##### In full precision
62
 
63
+ <details>
64
+ <summary> Click to expand </summary>
65
 
66
+ ```python
67
+ import requests
68
+ from PIL import Image
69
+ from transformers import BlipProcessor, BlipForConditionalGeneration
70
 
71
+ processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
72
+ model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap").to("cuda")
73
 
74
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
75
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
76
 
77
+ inputs = processor(raw_image, return_tensors="pt").to("cuda")
78
+ pixel_values = inputs.pixel_values
79
+ out = model.generate(pixel_values=pixel_values, max_length=250)
80
+ print(processor.decode(out[0], skip_special_tokens=True))
81
+ >>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue.
82
+ ```
83
+ </details>
84
 
85
+ ##### In half precision (`float16`)
86
 
87
+ <details>
88
+ <summary> Click to expand </summary>
89
 
90
+ ```python
91
+ import torch
92
+ import requests
93
+ from PIL import Image
94
+ from transformers import BlipProcessor, BlipForConditionalGeneration
95
 
96
+ processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
97
+ model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap", torch_dtype=torch.float16).to("cuda")
98
 
99
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
100
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
101
 
102
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
103
+ pixel_values = inputs.pixel_values
104
+ out = model.generate(pixel_values=pixel_values, max_length=250)
105
+ print(processor.decode(out[0], skip_special_tokens=True))
106
+ >>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue.
107
+ ```
108
+ </details>