unreal-hug
commited on
Commit
•
0001752
1
Parent(s):
a794986
End of training
Browse files- README.md +93 -198
- config.json +98 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,201 +1,96 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
###
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b3
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b2-seed-67-v1
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b2-seed-67-v1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the unreal-hug/REAL_DATASET_SEG_331 dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4746
|
21 |
+
- Mean Iou: 0.2841
|
22 |
+
- Mean Accuracy: 0.3507
|
23 |
+
- Overall Accuracy: 0.6084
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Lv: 0.7915
|
26 |
+
- Accuracy Rv: 0.4646
|
27 |
+
- Accuracy Ra: 0.4834
|
28 |
+
- Accuracy La: 0.6858
|
29 |
+
- Accuracy Vs: 0.0
|
30 |
+
- Accuracy As: 0.0
|
31 |
+
- Accuracy Mk: 0.0
|
32 |
+
- Accuracy Tk: nan
|
33 |
+
- Accuracy Asd: 0.3160
|
34 |
+
- Accuracy Vsd: 0.2747
|
35 |
+
- Accuracy Ak: 0.4910
|
36 |
+
- Iou Unlabeled: 0.0
|
37 |
+
- Iou Lv: 0.7252
|
38 |
+
- Iou Rv: 0.4232
|
39 |
+
- Iou Ra: 0.4411
|
40 |
+
- Iou La: 0.5427
|
41 |
+
- Iou Vs: 0.0
|
42 |
+
- Iou As: 0.0
|
43 |
+
- Iou Mk: 0.0
|
44 |
+
- Iou Tk: nan
|
45 |
+
- Iou Asd: 0.2832
|
46 |
+
- Iou Vsd: 0.2342
|
47 |
+
- Iou Ak: 0.4759
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-05
|
67 |
+
- train_batch_size: 16
|
68 |
+
- eval_batch_size: 16
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: cosine
|
72 |
+
- lr_scheduler_warmup_ratio: 0.05
|
73 |
+
- training_steps: 1000
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|:-------:|:------:|
|
79 |
+
| 1.2449 | 5.88 | 100 | 1.1508 | 0.1187 | 0.1954 | 0.4575 | nan | 0.8193 | 0.0533 | 0.1371 | 0.5424 | 0.0 | 0.0 | 0.0 | nan | 0.0171 | 0.0155 | 0.3697 | 0.0 | 0.5501 | 0.0518 | 0.1253 | 0.3509 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0170 | 0.0148 | 0.3145 |
|
80 |
+
| 0.7118 | 11.76 | 200 | 0.7012 | 0.1534 | 0.2007 | 0.4466 | nan | 0.7352 | 0.1138 | 0.2300 | 0.5548 | 0.0 | 0.0 | 0.0 | nan | 0.0168 | 0.0284 | 0.3280 | 0.0 | 0.6079 | 0.1081 | 0.2084 | 0.4120 | 0.0 | 0.0 | 0.0 | nan | 0.0167 | 0.0276 | 0.3064 |
|
81 |
+
| 0.5567 | 17.65 | 300 | 0.5686 | 0.1896 | 0.2372 | 0.4810 | nan | 0.6994 | 0.2332 | 0.3522 | 0.5913 | 0.0 | 0.0 | 0.0 | nan | 0.0389 | 0.0765 | 0.3806 | 0.0 | 0.6382 | 0.2142 | 0.3023 | 0.4563 | 0.0 | 0.0 | 0.0 | nan | 0.0386 | 0.0714 | 0.3649 |
|
82 |
+
| 0.5054 | 23.53 | 400 | 0.5441 | 0.2473 | 0.3075 | 0.5803 | nan | 0.7991 | 0.4241 | 0.4885 | 0.5970 | 0.0 | 0.0 | 0.0 | nan | 0.1535 | 0.1388 | 0.4745 | 0.0 | 0.7215 | 0.3725 | 0.4107 | 0.4908 | 0.0 | 0.0 | 0.0 | nan | 0.1486 | 0.1228 | 0.4537 |
|
83 |
+
| 0.4344 | 29.41 | 500 | 0.5188 | 0.2706 | 0.3382 | 0.5967 | nan | 0.7810 | 0.4337 | 0.4668 | 0.7031 | 0.0 | 0.0 | 0.0 | nan | 0.2612 | 0.2644 | 0.4721 | 0.0 | 0.7121 | 0.3916 | 0.4164 | 0.5372 | 0.0 | 0.0 | 0.0 | nan | 0.2398 | 0.2236 | 0.4558 |
|
84 |
+
| 0.3796 | 35.29 | 600 | 0.5032 | 0.2669 | 0.3315 | 0.5911 | nan | 0.7953 | 0.4343 | 0.4050 | 0.6920 | 0.0 | 0.0 | 0.0 | nan | 0.2841 | 0.2321 | 0.4717 | 0.0 | 0.7196 | 0.3965 | 0.3778 | 0.5273 | 0.0 | 0.0 | 0.0 | nan | 0.2589 | 0.1996 | 0.4568 |
|
85 |
+
| 0.3888 | 41.18 | 700 | 0.4801 | 0.2798 | 0.3461 | 0.6037 | nan | 0.7862 | 0.4532 | 0.4667 | 0.6983 | 0.0 | 0.0 | 0.0 | nan | 0.3065 | 0.2590 | 0.4908 | 0.0 | 0.7192 | 0.4127 | 0.4292 | 0.5444 | 0.0 | 0.0 | 0.0 | nan | 0.2756 | 0.2216 | 0.4746 |
|
86 |
+
| 0.3467 | 47.06 | 800 | 0.4753 | 0.2822 | 0.3478 | 0.6061 | nan | 0.7919 | 0.4585 | 0.4857 | 0.6814 | 0.0 | 0.0 | 0.0 | nan | 0.3131 | 0.2640 | 0.4831 | 0.0 | 0.7259 | 0.4196 | 0.4424 | 0.5402 | 0.0 | 0.0 | 0.0 | nan | 0.2813 | 0.2262 | 0.4685 |
|
87 |
+
| 0.3757 | 52.94 | 900 | 0.4746 | 0.2841 | 0.3507 | 0.6084 | nan | 0.7915 | 0.4646 | 0.4834 | 0.6858 | 0.0 | 0.0 | 0.0 | nan | 0.3160 | 0.2747 | 0.4910 | 0.0 | 0.7252 | 0.4232 | 0.4411 | 0.5427 | 0.0 | 0.0 | 0.0 | nan | 0.2832 | 0.2342 | 0.4759 |
|
88 |
+
| 0.3616 | 58.82 | 1000 | 0.4788 | 0.2860 | 0.3537 | 0.6116 | nan | 0.7931 | 0.4687 | 0.4837 | 0.6922 | 0.0 | 0.0 | 0.0 | nan | 0.3193 | 0.2830 | 0.4970 | 0.0 | 0.7262 | 0.4259 | 0.4411 | 0.5449 | 0.0 | 0.0 | 0.0 | nan | 0.2856 | 0.2407 | 0.4817 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.37.2
|
94 |
+
- Pytorch 2.1.2+cu121
|
95 |
+
- Datasets 2.16.1
|
96 |
+
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b3",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
18,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "LV",
|
33 |
+
"2": "RV",
|
34 |
+
"3": "RA",
|
35 |
+
"4": "LA",
|
36 |
+
"5": "VS",
|
37 |
+
"6": "AS",
|
38 |
+
"7": "MK",
|
39 |
+
"8": "TK",
|
40 |
+
"9": "ASD",
|
41 |
+
"10": "VSD",
|
42 |
+
"11": "AK"
|
43 |
+
},
|
44 |
+
"image_size": 224,
|
45 |
+
"initializer_range": 0.02,
|
46 |
+
"label2id": {
|
47 |
+
"AK": 11,
|
48 |
+
"AS": 6,
|
49 |
+
"ASD": 9,
|
50 |
+
"LA": 4,
|
51 |
+
"LV": 1,
|
52 |
+
"MK": 7,
|
53 |
+
"RA": 3,
|
54 |
+
"RV": 2,
|
55 |
+
"TK": 8,
|
56 |
+
"VS": 5,
|
57 |
+
"VSD": 10,
|
58 |
+
"unlabeled": 0
|
59 |
+
},
|
60 |
+
"layer_norm_eps": 1e-06,
|
61 |
+
"mlp_ratios": [
|
62 |
+
4,
|
63 |
+
4,
|
64 |
+
4,
|
65 |
+
4
|
66 |
+
],
|
67 |
+
"model_type": "segformer",
|
68 |
+
"num_attention_heads": [
|
69 |
+
1,
|
70 |
+
2,
|
71 |
+
5,
|
72 |
+
8
|
73 |
+
],
|
74 |
+
"num_channels": 3,
|
75 |
+
"num_encoder_blocks": 4,
|
76 |
+
"patch_sizes": [
|
77 |
+
7,
|
78 |
+
3,
|
79 |
+
3,
|
80 |
+
3
|
81 |
+
],
|
82 |
+
"reshape_last_stage": true,
|
83 |
+
"semantic_loss_ignore_index": 255,
|
84 |
+
"sr_ratios": [
|
85 |
+
8,
|
86 |
+
4,
|
87 |
+
2,
|
88 |
+
1
|
89 |
+
],
|
90 |
+
"strides": [
|
91 |
+
4,
|
92 |
+
2,
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
"torch_dtype": "float32",
|
97 |
+
"transformers_version": "4.37.2"
|
98 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:042d6c23acac10f28c8868419dc4512246ee9d725e3fe5fb5d6e62c478539485
|
3 |
+
size 189010544
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a7690a8397c9f5e69fc6ea0b5596dcec8b4d097c7453f3e1e330135794ce8a1
|
3 |
+
size 4728
|