File size: 6,459 Bytes
ba71bb6
4b3be16
 
 
 
 
 
 
 
 
ba71bb6
 
4b3be16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: other
base_model: nvidia/mit-b3
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b2-seed63-apr-13-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b2-seed63-apr-13-v1

This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the unreal-hug/REAL_DATASET_SEG_401_6_lbls dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7138
- Mean Iou: 0.1266
- Mean Accuracy: 0.2136
- Overall Accuracy: 0.4273
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.6939
- Accuracy Rv: 0.0982
- Accuracy Ra: 0.1706
- Accuracy La: 0.5041
- Accuracy Vs: 0.0
- Accuracy As: 0.0
- Accuracy Mk: 0.0
- Accuracy Tk: nan
- Accuracy Asd: 0.0557
- Accuracy Vsd: 0.2283
- Accuracy Ak: 0.3849
- Iou Unlabeled: 0.0
- Iou Lv: 0.4965
- Iou Rv: 0.0899
- Iou Ra: 0.1288
- Iou La: 0.2845
- Iou Vs: 0.0
- Iou As: 0.0
- Iou Mk: 0.0
- Iou Tk: 0.0
- Iou Asd: 0.0462
- Iou Vsd: 0.1513
- Iou Ak: 0.3225

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|:-------:|:------:|
| 2.5423        | 2.5   | 100  | 2.6367          | 0.0332   | 0.0976        | 0.0951           | nan                | 0.0612      | 0.0642      | 0.0301      | 0.1898      | 0.0         | 0.0         | 0.0086      | nan         | 0.0495       | 0.4697       | 0.1033      | 0.0           | 0.0573 | 0.0485 | 0.0262 | 0.1021 | 0.0    | 0.0    | 0.0019 | 0.0    | 0.0204  | 0.0612  | 0.0812 |
| 2.3042        | 5.0   | 200  | 2.3925          | 0.0604   | 0.1412        | 0.1975           | nan                | 0.2435      | 0.0655      | 0.1292      | 0.2869      | 0.0         | 0.0         | 0.0046      | nan         | 0.0669       | 0.4894       | 0.1258      | 0.0           | 0.2144 | 0.0516 | 0.1074 | 0.1515 | 0.0    | 0.0    | 0.0017 | 0.0    | 0.0243  | 0.0670  | 0.1063 |
| 2.0869        | 7.5   | 300  | 2.2183          | 0.0932   | 0.1839        | 0.3354           | nan                | 0.5208      | 0.0717      | 0.1836      | 0.4192      | 0.0         | 0.0         | 0.0006      | nan         | 0.0768       | 0.3608       | 0.2060      | 0.0           | 0.4077 | 0.0617 | 0.1436 | 0.2158 | 0.0    | 0.0    | 0.0003 | 0.0    | 0.0358  | 0.0787  | 0.1746 |
| 2.0559        | 10.0  | 400  | 2.0298          | 0.1110   | 0.2055        | 0.3886           | nan                | 0.6144      | 0.1027      | 0.1815      | 0.4598      | 0.0         | 0.0         | 0.0005      | nan         | 0.0909       | 0.3011       | 0.3041      | 0.0           | 0.4559 | 0.0880 | 0.1400 | 0.2409 | 0.0    | 0.0    | 0.0003 | 0.0    | 0.0534  | 0.1001  | 0.2538 |
| 1.9554        | 12.5  | 500  | 1.8871          | 0.1189   | 0.2111        | 0.4100           | nan                | 0.6561      | 0.1004      | 0.1647      | 0.4900      | 0.0         | 0.0         | 0.0009      | nan         | 0.0763       | 0.2611       | 0.3619      | 0.0           | 0.4739 | 0.0896 | 0.1263 | 0.2616 | 0.0    | 0.0    | 0.0007 | 0.0    | 0.0531  | 0.1207  | 0.3015 |
| 2.0181        | 15.0  | 600  | 1.7720          | 0.1247   | 0.2139        | 0.4199           | nan                | 0.6735      | 0.1008      | 0.1723      | 0.4898      | 0.0         | 0.0         | 0.0         | nan         | 0.0706       | 0.2349       | 0.3972      | 0.0           | 0.4860 | 0.0912 | 0.1293 | 0.2720 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0532  | 0.1386  | 0.3256 |
| 1.6723        | 17.5  | 700  | 1.7386          | 0.1258   | 0.2129        | 0.4251           | nan                | 0.6860      | 0.1011      | 0.1724      | 0.5062      | 0.0         | 0.0         | 0.0         | nan         | 0.0615       | 0.2167       | 0.3848      | 0.0           | 0.4927 | 0.0917 | 0.1304 | 0.2814 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0488  | 0.1426  | 0.3221 |
| 1.5613        | 20.0  | 800  | 1.7751          | 0.1269   | 0.2151        | 0.4322           | nan                | 0.7050      | 0.1020      | 0.1730      | 0.5066      | 0.0         | 0.0         | 0.0         | nan         | 0.0570       | 0.2288       | 0.3788      | 0.0           | 0.4990 | 0.0927 | 0.1308 | 0.2841 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0465  | 0.1502  | 0.3199 |
| 1.5653        | 22.5  | 900  | 1.7222          | 0.1272   | 0.2142        | 0.4277           | nan                | 0.6924      | 0.1003      | 0.1794      | 0.5018      | 0.0         | 0.0         | 0.0         | nan         | 0.0568       | 0.2295       | 0.3814      | 0.0           | 0.4969 | 0.0914 | 0.1341 | 0.2837 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0466  | 0.1523  | 0.3209 |
| 1.5196        | 25.0  | 1000 | 1.7138          | 0.1266   | 0.2136        | 0.4273           | nan                | 0.6939      | 0.0982      | 0.1706      | 0.5041      | 0.0         | 0.0         | 0.0         | nan         | 0.0557       | 0.2283       | 0.3849      | 0.0           | 0.4965 | 0.0899 | 0.1288 | 0.2845 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0462  | 0.1513  | 0.3225 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0