shimmyshimmer commited on
Commit
1ab0e15
·
verified ·
1 Parent(s): bc1d7e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -158
README.md CHANGED
@@ -1,199 +1,174 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
 
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
75
 
76
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- ### Training Data
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: llava-hf/llava-1.5-7b-hf
3
+ language:
4
+ - en
5
  library_name: transformers
6
+ pipeline_tag: image-text-to-text
7
+ license: llama2
8
+ tags:
9
+ - multimodal
10
+ - llava
11
+ - vision
12
+ - unsloth
13
  ---
14
 
15
+ # Finetune Llama 3.2, Qwen 2.5, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
16
 
17
+ We have a free Google Colab Tesla T4 notebook for Llava 1.5 (7B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing
18
 
19
+ And a free notebook for [Llama 3.2 Vision (11B) here](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing)
20
 
21
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
22
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
 
 
24
 
25
+ # unsloth/llava-1.5-7b-hf
26
+ For more details on the model, please go to the original [model card](https://huggingface.co/llava-hf/llava-1.5-7b-hf/)
27
 
28
+ ## Finetune for Free
29
 
30
+ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
31
 
32
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
33
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
34
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
35
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2x faster | 40% less |
36
+ | **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 1.8x faster | 40% less |
37
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing) | 2x faster | 60% less |
38
+ | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
39
+ | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
40
+ | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
41
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
42
+ | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
43
 
44
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
45
 
46
+ - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
47
+ - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
48
+ - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
49
 
 
 
 
50
 
51
+ ### Llava 1.5 Details
52
 
53
+ **Model type:**
54
+ LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
55
+ It is an auto-regressive language model, based on the transformer architecture.
56
 
57
+ **Model date:**
58
+ LLaVA-v1.5-7B was trained in September 2023.
59
 
60
+ **Paper or resources for more information:**
61
+ https://llava-vl.github.io/
62
 
63
+ ## How to use the model
64
 
65
+ First, make sure to have `transformers >= 4.35.3`.
66
+ The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
67
 
68
+ ### Using `pipeline`:
69
 
70
+ Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint.
71
 
72
+ ```python
73
+ from transformers import pipeline, AutoProcessor
74
+ from PIL import Image
75
+ import requests
76
 
77
+ model_id = "llava-hf/llava-1.5-7b-hf"
78
+ pipe = pipeline("image-to-text", model=model_id)
79
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
80
+ image = Image.open(requests.get(url, stream=True).raw)
81
 
82
+ # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
83
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
84
+ conversation = [
85
+ {
86
+ "role": "user",
87
+ "content": [
88
+ {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
89
+ {"type": "image"},
90
+ ],
91
+ },
92
+ ]
93
+ processor = AutoProcessor.from_pretrained(model_id)
94
 
95
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
96
 
97
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
98
+ print(outputs)
99
+ >>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
100
+ ```
101
 
102
+ ### Using pure `transformers`:
103
 
104
+ Below is an example script to run generation in `float16` precision on a GPU device:
105
 
106
+ ```python
107
+ import requests
108
+ from PIL import Image
109
 
110
+ import torch
111
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
112
 
113
+ model_id = "llava-hf/llava-1.5-7b-hf"
114
+ model = LlavaForConditionalGeneration.from_pretrained(
115
+ model_id,
116
+ torch_dtype=torch.float16,
117
+ low_cpu_mem_usage=True,
118
+ ).to(0)
119
 
120
+ processor = AutoProcessor.from_pretrained(model_id)
121
 
122
+ # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
123
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
124
+ conversation = [
125
+ {
126
 
127
+ "role": "user",
128
+ "content": [
129
+ {"type": "text", "text": "What are these?"},
130
+ {"type": "image"},
131
+ ],
132
+ },
133
+ ]
134
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
135
+
136
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
137
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
138
+ inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
139
 
140
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
141
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
142
+ ```
143
 
144
+ ### Model optimization
145
 
146
+ #### 4-bit quantization through `bitsandbytes` library
147
 
148
+ First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
149
 
150
+ ```diff
151
+ model = LlavaForConditionalGeneration.from_pretrained(
152
+ model_id,
153
+ torch_dtype=torch.float16,
154
+ low_cpu_mem_usage=True,
155
+ + load_in_4bit=True
156
+ )
157
+ ```
158
+
159
+ #### Use Flash-Attention 2 to further speed-up generation
160
+
161
+ First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
162
+
163
+ ```diff
164
+ model = LlavaForConditionalGeneration.from_pretrained(
165
+ model_id,
166
+ torch_dtype=torch.float16,
167
+ low_cpu_mem_usage=True,
168
+ + use_flash_attention_2=True
169
+ ).to(0)
170
+ ```
171
+
172
+ ## License
173
+ Llama 2 is licensed under the LLAMA 2 Community License,
174
+ Copyright (c) Meta Platforms, Inc. All Rights Reserved.