kimihailv commited on
Commit
ff7b381
1 Parent(s): d7cf97c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ ---
6
+ <h1 align="center">UForm</h1>
7
+ <h3 align="center">
8
+ Pocket-Sized Multimodal AI<br/>
9
+ For Content Understanding and Generation<br/>
10
+ </h3>
11
+
12
+ ## Description
13
+
14
+ UForm-Gen is a small generative vision-language model primarly designed for Image Captioning and Visual Question Answering. The model consists of two parts:
15
+
16
+ 1. [UForm Vision Encoder](https://huggingface.co/unum-cloud/uform-vl-english)
17
+ 2. [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) manually tuned on the instruction dataset
18
+
19
+ The model was pre-trained on: MSCOCO, SBU Captions, Visual Genome, VQAv2, GQA and a few internal datasets.
20
+
21
+ ### Usage
22
+
23
+ ```bash
24
+ pip install uform
25
+ ```
26
+
27
+ The generative model can be used to caption images, summarize their content, or answer questions about them.
28
+ The exact behavior is controlled by prompts.
29
+
30
+ ```python
31
+ from uform.gen_model import VLMForCausalLM, VLMProcessor
32
+
33
+ model = VLMForCausalLM.from_pretrained("unum-cloud/uform-gen")
34
+ processor = VLMProcessor.from_pretrained("unum-cloud/uform-gen")
35
+
36
+ # [cap] Narrate the contents of the image with precision.
37
+ # [cap] Summarize the visual content of the image.
38
+ # [vqa] What is the main subject of the image?
39
+ prompt = "[cap] Summarize the visual content of the image."
40
+ image = Image.open("zebra.jpg")
41
+
42
+ inputs = processor(texts=[prompt], images=[image], return_tensors="pt")
43
+ with torch.inference_mode():
44
+ output = model.generate(
45
+ **inputs,
46
+ do_sample=False,
47
+ use_cache=True,
48
+ max_new_tokens=128,
49
+ eos_token_id=32001,
50
+ pad_token_id=processor.tokenizer.pad_token_id
51
+ )
52
+
53
+ prompt_len = inputs["input_ids"].shape[1]
54
+ decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
55
+ ```
56
+
57
+
58
+ ## Evaluation
59
+
60
+ For captioning evaluation we measure CLIPScore and RefCLIPScore¹.
61
+
62
+ | Model | Size | Caption Length | CLIPScore | RefCLIPScore |
63
+ | :---------------------------------- | ---: | -------------: | --------: | -----------: |
64
+ | `llava-hf/llava-1.5-7b-hf` | 7B | Long | 0.878 | 0.529 |
65
+ | `llava-hf/llava-1.5-7b-hf` | 7B | Short | 0.886 | 0.531 |
66
+ | |
67
+ | `Salesforce/instructblip-vicuna-7b` | 7B | Long | 0.902 | 0.534 |
68
+ | `Salesforce/instructblip-vicuna-7b` | 7B | Short | 0.848 | 0.523 |
69
+ | |
70
+ | `unum-cloud/uform-gen` | 1.5B | Long | 0.847 | 0.523 |
71
+ | `unum-cloud/uform-gen` | 1.5B | Short | 0.842 | 0.522 |
72
+ | |
73
+ | `unum-cloud/uform-gen-chat` | 1.5B | Long | 0.860 | 0.525 |
74
+ | `unum-cloud/uform-gen-chat` | 1.5B | Short | 0.858 | 0.525 |
75
+
76
+ Results for VQAv2 evaluation.
77
+
78
+ | Model | Size | Accuracy |
79
+ | :------------------------- | ---: | -------: |
80
+ | `llava-hf/llava-1.5-7b-hf` | 7B | 78.5 |
81
+ | `unum-cloud/uform-gen` | 1.5B | 66.5 |
82
+
83
+ ¹ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model.
84
+
85
+
86
+ ## Speed
87
+
88
+ On RTX 3090, the following performance is expected on text token generation using `float16`, equivalent PyTorch settings, and greedy decoding.
89
+
90
+ | Model | Size | Speed | Speedup |
91
+ | :---------------------------------- | ---: | ------------------: | --------: |
92
+ | `llava-hf/llava-1.5-7b-hf` | 7B | ~ 40 tokens/second | |
93
+ | `Salesforce/instructblip-vicuna-7b` | 7B | ~ 40 tokens/second | |
94
+ | `unum-cloud/uform-gen` | 1.5B | ~ 140 tokens/second | __x 3.5__ |
95
+