--- pipeline_tag: image-to-text tags: - image-captioning - visual-question-answering datasets: - sbu_captions - visual_genome - HuggingFaceM4/VQAv2 - ChristophSchuhmann/MS_COCO_2017_URL_TEXT widget: - text: "What is the invoice number?" src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" - text: "What is the purchase amount?" src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" language: - en license: apache-2.0 base_model: unum-cloud/uform-vl-english ---

UForm

Pocket-Sized Multimodal AI
For Content Understanding and Generation

## Description UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts: 1. [UForm Vision Encoder](https://huggingface.co/unum-cloud/uform-vl-english) 2. [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) manually tuned on the instructions dataset The model was pre-trained on: MSCOCO, SBU Captions, Visual Genome, VQAv2, GQA and a few internal datasets. ### Usage ```bash pip install uform ``` The generative model can be used to caption images, summarize their content, or answer questions about them. The exact behavior is controlled by prompts. ```python from uform.gen_model import VLMForCausalLM, VLMProcessor model = VLMForCausalLM.from_pretrained("unum-cloud/uform-gen") processor = VLMProcessor.from_pretrained("unum-cloud/uform-gen") # [cap] Narrate the contents of the image with precision. # [cap] Summarize the visual content of the image. # [vqa] What is the main subject of the image? prompt = "[cap] Summarize the visual content of the image." image = Image.open("zebra.jpg") inputs = processor(texts=[prompt], images=[image], return_tensors="pt") with torch.inference_mode(): output = model.generate( **inputs, do_sample=False, use_cache=True, max_new_tokens=128, eos_token_id=32001, pad_token_id=processor.tokenizer.pad_token_id ) prompt_len = inputs["input_ids"].shape[1] decoded_text = processor.batch_decode(output[:, prompt_len:])[0] ``` ## Evaluation For captioning evaluation we measure CLIPScore and RefCLIPScore¹. | Model | Size | Caption Length | CLIPScore | RefCLIPScore | | :---------------------------------- | ---: | -------------: | --------: | -----------: | | `llava-hf/llava-1.5-7b-hf` | 7B | Long | 0.878 | 0.529 | | `llava-hf/llava-1.5-7b-hf` | 7B | Short | 0.886 | 0.531 | | | | `Salesforce/instructblip-vicuna-7b` | 7B | Long | 0.902 | 0.534 | | `Salesforce/instructblip-vicuna-7b` | 7B | Short | 0.848 | 0.523 | | | | | `unum-cloud/uform-gen` | 1.5B | Long | 0.847 | 0.523 | | `unum-cloud/uform-gen` | 1.5B | Short | 0.842 | 0.522 | Results for VQAv2 evaluation. | Model | Size | Accuracy | | :------------------------- | ---: | -------: | | `llava-hf/llava-1.5-7b-hf` | 7B | 78.5 | | `unum-cloud/uform-gen` | 1.5B | 66.5 | ¹ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model. ## Speed On RTX 3090, the following performance is expected on text token generation using `float16`, equivalent PyTorch settings, and greedy decoding. | Model | Size | Speed | Speedup | | :---------------------------------- | ---: | ------------------: | --------: | | `llava-hf/llava-1.5-7b-hf` | 7B | ~ 40 tokens/second | | | `Salesforce/instructblip-vicuna-7b` | 7B | ~ 40 tokens/second | | | `unum-cloud/uform-gen` | 1.5B | ~ 140 tokens/second | __x 3.5__ |