--- datasets: - upb-nlp/article_to_search_query language: - ro - en base_model: - OpenLLM-Ro/RoLlama2-7b-Base ---
Logo
## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("upb-nlp/rollama2_7b_article_to_search_query") model = AutoModelForCausalLM.from_pretrained("upb-nlp/rollama2_7b_article_to_search_query") BASE_PROMPT = """You are a tool that turns news articles into realistic Google search queries someone might use to find the article.
{}
search query: """ INPUT_ARTICLE = "This is your article's title. This is your article's body." input_text = BASE_PROMPT.format(INPUT_ARTICLE) input_ids = tokenizer(input_text, truncation=True, max_length=1024, return_tensors="pt").to(torch.device('cuda')) outputs = model.generate(**input_ids, max_new_tokens=100) decoded_output = tokenizer.decode(outputs[0]) ```